THE PACKAGING DESIGNER'S BOOK OF PATTERNS

LASZLO ROTH & GEORGE WYBENGGA

FOURTH EDITION
The Packaging Designer’s Book of Patterns

Fourth Edition

George L. Wybenga
Lászlo Roth
Contents

Preface to the Fourth Edition iv

Foreword v

1. Introduction 1

2. The Folding Carton 19

 Trays 25

 Tubes 99

 Sleeves, Wraps, and Folders 291

3. The Set-Up or Rigid Paper Box 421

4. Corrugated Containers 461

5. Point-of-Purchase Displays 589

Glossary 687

Bibliography 690

Index 691
Preface to the Fourth Edition

When originally published in 1991, this book was the first definitive collection of patterns and structural designs for paperboard packaging, point-of-purchase displays, and other three-dimensional graphic products. That first edition contained over 450 patterns and structural designs that were intended to be adapted for packaging.

This fourth edition continues to be the most definitive collection of patterns available, but it now contains well over 600 patterns. The designer may choose among hundreds of alternative carton and box structures, which may be used as they are, modified, or adapted to create exciting new structures. The patterns are accompanied by a description of the historical and technical origins of the materials and methods used. Special attention is given to computer-aided design as an engineering tool that offers new insights into carton and box design and manufacturing.

Paperboard packaging has a profound impact on the global economy. In 2011, the global paper packaging market was estimated to be worth $236 billion. The increasingly consumer driven market will continue to grow globally, especially in North America, China, and India as eco-friendly solutions, technological improvements, and improving paper barrier properties continue to gain greater consumer acceptance.

The packaging materials industry serves every major retail environment. If it is to continue to thrive, it must also continue to be creative and innovative. It must be market oriented and must continually supply new methodologies and new solutions to environmental problems. Along with sensitivity to environmental problems, creativity should be the designer's most important consideration. This workbook may be used not only as a reference for structural design but also as a source of exercises in learning to stimulate creative skills. The cartons shown in this book are designed to depict generic styles whenever possible. Each illustration is accompanied by the name that is commonly used to describe the style.

Some of the packages currently in use are patented or have patent-protected features for use on proprietary packaging machinery. Where appropriate, patented features are indicated. The reader is advised that patented features are protected by patent law and may not be used in practice without the express permission of the patent holder. For information about patents, contact the U.S. Patent Office.
Foreword

The Packaging Designer’s Book of Patterns has been the reference guide for students and faculty in the Packaging Design Department at The Fashion Institute of Technology since the first edition. In fact, there are few professional resources that have been as valuable an asset as this book. There are multiple copies floating around a classroom on any given day, students search out copies when they did not bring their own to school, faculty regularly refer to the content of each revised edition as they guide students through the design process, alumni treasure their book as the go-to resource and design professionals across the globe look forward to each revised edition with the latest patterns.

Packaging design is a complex endeavor. While effective packaging design includes color, typography, and graphics, structure is among the most essential and influential components. The structure in the final produced design can ultimately lead to a product’s marketing success. In fact, research has proven that a packaging’s structure is one of the most influential factors in attracting a consumer and creating brand recognition. The most effective structures are designed to satisfy many prerequisites including security, protection, compatibility with other structures within a system, ability to identify the brand, adaptability to the retail environment, and in-use and storage requirements.

The desire to satisfy the complex structural design goals of a packaging assignment is influenced by many factors and choices made by designers. The packaging structure’s pattern and the proven ability for that pattern to be produced and reproduced are critically important. With the hundreds of patterns that can serve as the framework for the packaging’s structure, the choices for a designer can be overwhelming and endless. Many patterns are intricate, complicated, or unusual. Even the structures that appear to be the simplest layout can be challenging for a designer to visualize, assemble or construct. Skills such as precision and attention to detail are among those required in recreating the patterns for a packaging structure.

This book, therefore, with the most up-to-date, highest quality, innovative, comprehensive and proven patterns enables packaging designers to achieve their project specific design objectives with precision. George Wybenga’s research into every possible paperboard structure used in packaging design, along with his ability to deconstruct and recreate these structures into usable patterns, saves designers and their clients thousands of hours in research and labor. These patterns enable designers to create packaging designs—and ultimately serve their clients’ needs—with confidence. Since the patterns detailed throughout are easily created using paperboard—when designed appropriately—this book supports the sustainable goals that should be at the core of any packaging design project.

Marianne Rosner Klimchuk
Associate Chairperson
Packaging Design Department
Fashion Institute of Technology
Introduction

17th Century Dutch Paper Mill
Paper is among the noblest of human inventions. It is worthwhile, therefore, to begin with a short history of papermaking.

Before books could be written and preserved, a writing surface had to be developed that was light, not too bulky, and was easily stored. The first great advance was the Egyptians’ use of papyrus in the third millennium B.C. Sheets of beaten papyrus stems were fastened together into scrolls, some more than 120 feet long, that could be rolled up for storage. After papyrus came parchment, which was perfected in Asia Minor in the city of Pergamum (from which its name is derived) in the second century B.C. Animal skins had long been used as a writing surface in Greece and Rome, but it was in Pergamum that methods were evolved for the production of a durable, velvet-smooth parchment that could be written on on both sides.

For hundreds of years all paper was made by hand from rag pulp. The use of wood fibers to make paper was discovered in the mid-1800s. In 1840 Friedrich G. Keller in Germany invented a way to grind logs into a fibrous pulp; this method produced a rather poor quality of paper, as all parts of the wood—not just the fibers—were used.

Paper as we know it today was first made in China in 105 A.D. Ts’ai Lun, a member of the court of Emperor Ho Ti, succeeded in turning husks of cotton fibers into paper pulp. This method spread throughout China, Korea, and Japan and as far west as Persia. In 751 A.D. Moslems captured a Chinese paper mill in Samarkand and learned the method of papermaking. They brought the method to Spain around 950 A.D., and by the thirteenth century paper mills had been established throughout Western Europe, first in Italy and then in France, Germany, England, and Scandinavia.

The first paper mill in America was built in 1690 by William Rittenhouse near Philadelphia. Sheets of paper were produced one at a time until 1799, when Nicholas Louis Robert developed a continuous process. (This method was patented in England by the Fourdrinier brothers and is known by that
name.) In 1817 the first cylinder-type paper-making machine, which can produce a better quality of paper in a continuous process, was invented by John Dickenson.

MODERN PAPERMAKING

Today almost all paper is manufactured from wood. Cellulose fibers (which account for 50 percent of the content of wood) are the primary ingredient, followed by lignin (about 30 percent), which acts as a fiber binder or glue.

Water plays an important role in modern papermaking. The manufacture of 1 ton of paper requires about 55,000 gallons of water, most of which is recycled. The papermaking process also uses sulfur, magnesium, hydroxide, lime, salt, alkali, starch, alum, clay, and plastics (for coating). There are two basic types of paper: fine paper for writing and paper for printing and industrial use (packaging).

The first step in manufacturing paper from wood is to remove the bark. The cheapest way to separate the fibers is to grind up the wood by forcing the logs against grindstones submerged in water. The water carries off the wood fibers.

Diagram of a papermill (greatly simplified). The pulp is ejected in a thin layer onto the conveyer-sieve (A). The pulp is then pressed through a great number of cylinders (B) and dried by a series of heated cylinders (C). It is then calendered (D) and taken up by the web (E).
In this process everything is used, and the paper produced is of low quality. Another, more frequently used process is chemical pulping, in which the wood is chipped into small pieces, the fibers are extracted through a chemical process, and the unusable material is eliminated. Chemical pulping is more expensive, but it produces better-quality paper.

Chemical pulping creates a pulp, which is then refined by washing and separating the fibers. Refinement, a time-controlled process during which the manufacturer can add various chemicals to increase bonding, texture, and water resistance, increases the quality and strength of the paper. Pigments (for coloring) and coatings (plastics) can also be added at this stage.

Once the pulp is prepared, it goes to one of two types of machines: The Fourdrinier, or the cylinder machine. Modern papermaking machines are huge. They can be as long as a city block and several stories high. They produce paper up to 30 feet wide at a speed of 3,000 feet per minute, resulting in 800 miles of paper a day! The primary papermaking machine is the Fourdrinier. Most Fourdrinier machines make only one layer of material, although they can be equipped to make several layers.

Paper produced by a Fourdrinier machine is smoothed by a stack of highly polished steel rolls, a process known as calendering. The finished paper is then cut, coated, and laminated.

Another frequently used papermaking machine is the cylinder machine. This machine makes heavy grades of paperboard, generally using recycled paper pulp. The pulp is built up in layers. Since paperboard is much thicker than paper, the drying operation is far more extensive. Large steam-heated cylinders drive the excess moisture out of the paper. A coating is then added to create a smooth surface.

The great advantage of the cylinder machine is that it uses large amounts of recycled paper in thick layers to provide strength.

Paper is bought on the basis of the weight (or basis weight), in pounds, of a ream of paper. (A ream is equal to 3,000 square feet of surface.) The thickness of paperboard is expressed in caliper points, which are stated in thousandths of an inch (usually written in decimals). Since most papers are laminated or coated with other materials, caliper points are rarely used today to specify weight. The paperboard used in folding cartons is specified according to the size of the carton or, more often, the weight of the item that goes into it. A glass bottle for 3.5 fluid ounces of fragrance, for example, would require a folding carton with a thickness of approximately 18 to 24 points.

The thickness of paper can be controlled by means of calendering, pressing, and laminating. High-quality paper is up to 12 points thick; paperboard varies in thickness from 12 to 70 points.

About 20 million tons of fine papers are used for printing and writing annually. Five and a half million tons are used for packaging. Table 1, Table 2, and Table 3 list the major boxboards and papers used in packaging. The uses, content, and characteristics of these packaging materials are described.

PRINTING, FINISHING, AND DIE-CUTTING

Folding cartons are manufactured using three main processes: printing, die-cutting, and finishing.

Printing Methods

Several methods of printing are available; they include letterpress, offset lithography, gravure, flexography, and silk screen. Each method is suitable for particular types of jobs.

The letterpress method transfers ink from a metal plate directly to the sheet paperboard. This is one of the oldest methods of quality
printing. New technologies have rendered it almost obsolete. **Offset lithography** has replaced letterpress because of its production efficiency and high-quality color reproduction. New high-speed presses and computer-aided systems, along with technological advances in inks and coatings, have made "offset" the most popular process for printing on folding cartons. In this process specially sensitized metal plates are chemically treated to accept ink. The ink is transferred from the plate to a smooth blanket roller, which then transfers the image to the paperboard.

Gravure printing is used for high-quality reproduction in large-quantity runs (i.e., millions of copies). Specially etched printing cylinders have cells that accept and store inks. A "doctor blade" wipes off excess ink as the cylinder rotates to the impression cylinder, where the plate cylinder transfers the image to the paperboard. Gravure printing can be accomplished on an in-line web

Letterpress: The ink is applied to the raised surfaces of the plate and transferred to the substrate.

Offset lithography: The ink is picked up by the pre-wetted plate, which transfers the inked image to the offset blanket, which in turn transfers the image onto the substrate.

Gravure (Intaglio): The ink is applied over the entire plate, scraped off the surface by the doctor blade, and transferred from the ink wells onto the substrate.
press, which is known as *rotogravure*, or on a sheet-fed press, which is called *photogravure*.

Flexographic printing is similar to letterpress printing. It uses a raised positive composition plate made of rubber or plastic. High-speed in-line web presses are used. This process has been associated with low-quality simple line art printing, but recent technological breakthroughs with fast-drying inks have made flexographic printing a low-cost, high-quality method for medium production runs.

Silk screening is a simple method of color printing in which a fabric mesh stretched over a frame is used instead of a printing plate. A stencil-type design is adhered to the mesh and pigment is “squeegeed” through the stencil. A separate “stencil” is required for each color used. (See diagram.)

Printing technology has changed in recent years to better meet the needs of carton manufacturing. Special coatings, varnishes, lacquers, and inks are available to give a bright finish or provide a moisture-proof barrier. Environmental problems have been alleviated by the introduction of water-based coatings and inks.

Die-cutting

The process of die-cutting involves creating shapes using cutting and stamping dies. There are three methods of die-cutting. *Hollow* die-cutting is done with a hollow die, which looks like a cookie cutter. This method is used exclusively for labels and envelopes. *Steel rule* die-cutting is used when a close register is required. Steel rules are bent to the desired shape and wedged into a ¾” piece of plywood. The die is locked up in a chase on a platen of the die-cutting press. Several sheets can be cut at once. A flatbed cylinder press can also be used for die-cutting.

The third method of die-cutting uses *lasers*, which were invented by C. H. Townes and Arthur Schawlow in 1958. (The word *laser* is an acronym for “light amplification by stimulated emission of radiation.”) The laser beam, which can be concentrated on a small point and used for processes such as drilling, cutting, and welding, has become widely used in manufacturing, communications, and medicine. Since a laser beam is extremely sharp and precise, the resulting cut is very accurate and clean.

Silscreen: The ink is squeegeed through a stencil adhered to the mesh of the silk onto the substrate.

Laser cutout.
Steel rule die. This is a typical sample maker's die for a reverse-tuck carton. The die consists of scoring and cutting rules inserted into a sheet of plywood. A production die will have a great number of box layouts ganged so as to create as little waste as possible. Production dies are on either a flat sheet or a cylinder.
Dies for cutting, scoring, and perforating.

The steel die rule is completely embedded in the plywood, except where notches have been cut out of the bottom of the rule to prevent pieces of the plywood from dropping out.
Windows may be die-cut out of the face panel or extended into the top or side panels. They may be made in any shape desired for the final graphic solution. When laying out the window shape, consider leaving several shapes that may be printed with seasonal messages and retail price suggestions when the package blank is printed and can be removed when not required.
Embossing. Paper and board lend themselves to *embossing*, the process by which a design image is made to appear in relief. Embossing can be superimposed on printing or done on blank paper (blind embossing) for a sculptured three-dimensional effect. It is achieved by pressing a sheet of paper between a brass female die and a male bed, or counter, both of which are mounted in register on a press. Embossing is generally used on prestigious packages; on packaging for cosmetics, gifts, and stationery; and on promotional materials.

Finishing

Finishing operations include gluing (using adhesives), windowing (die-cutting), coating, and laminating.

There are several types of gluing equipment, each designed for specific purposes. Right-angle gluers are used for Beers-style and six-corner construction; straight-line gluers are used for side seams and automatic bottom-closed cartons. Automatic tray-forming devices are used in the manufacture of tapered trays, clamshells, and scoop-style cartons. Today computer-controlled multipurpose gluers are used in most large paperboard-manufacturing plants.

A wide variety of specially formulated adhesives are used for specialty cartons made of coated, laminated, and plastic materials. Environmental conditions such as high moisture levels, freezing temperatures, sterilization, and microwaving require specific types of adhesives. Many types of adhesives are available, including self-adhesive and pressure-sensitive labels, resin emulsion adhesive for coated boards, and cold- or hot-melt adhesives for plastics.

Scoring. Paper and board come in flat sheets or rolls. In all papers and boards the fibers are aligned in one direction, called the grain. If they are torn with the grain, the edges will be smooth. If they are torn against the grain, the edges will be ragged.

When scoring the fold lines on the comprehensive, only compress the fibers of the paper, do not crush or cut them. Use a dull knife or letter opener. With practice you should be able to score on one side of the paperboard and achieve clean folds. Use white glue sparingly on the glue flaps. A thin coat of rubber cement may be used for covering papers, foils, or fabrics. Caution: rubber cement is highly flammable and toxic; library paste is the preferred alternative.
Cutting. To facilitate the preparation of a packaging comprehensive, lay out the pattern carefully with triangle and T-square on the appropriate paper stock. Two-ply or three-ply are ideal for comps. Use a resilient backboard to score and cut; the chipboard on the back of drawing pads or a self-healing cutting board are great for this purpose. Use a steel straightedge for straight lines. To prevent sliding, glue a few strips of fine sandpaper to the back of the straightedge. An X-Acto® knife is easy to control for both straight and curved lines. Keep fingers well away from the cutting blade.
Table 1. BOXBOARDs USED IN PACKAGING: CYLINDER MACHINE GRADES

<table>
<thead>
<tr>
<th>Board</th>
<th>Uses</th>
<th>Chief Characteristics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plain chipboard; solid newsboard;</td>
<td>Used in the manufacture of set-up boxes.</td>
<td>100% recycled. Lowest-cost board produced; not good for printing. Color is light gray to tan. Adaptable for special lining papers.</td>
</tr>
<tr>
<td>news vat-lined chip; filled news</td>
<td></td>
<td></td>
</tr>
<tr>
<td>White vat-lined chipboard</td>
<td>Higher-grade set-up box with white liner.</td>
<td>Adaptable for color printing.</td>
</tr>
<tr>
<td>Bending chip</td>
<td>Folding cartons for light items.</td>
<td>100% recycled, excellent bending. Lowest-cost board for folding cartons.</td>
</tr>
<tr>
<td>Colored manila-lined bending chip</td>
<td>Same as bending chip.</td>
<td>Bright white liner, excellent for color printing.</td>
</tr>
<tr>
<td>White-line 70 newsback</td>
<td>Used for folding cartons, posters, displays.</td>
<td>100% recycled. Smooth white board.</td>
</tr>
<tr>
<td>Clay-coated boxboard</td>
<td>Used for quality cartons.</td>
<td>Very smooth white board with excellent printing surface.</td>
</tr>
<tr>
<td>Solid manila board</td>
<td>All carton uses, including food.</td>
<td>White liner and manila back.</td>
</tr>
<tr>
<td>Extra-strength plain kraft-type board</td>
<td>Used for hardware, automotive and other machine parts, toys.</td>
<td>Recycled. Available in various colors. Excellent bending ability.</td>
</tr>
<tr>
<td>Extra-strength white-lined or clay-coated kraft-type board</td>
<td>Used for heavy objects requiring durability and strength.</td>
<td>Recycled. Top liner is white, back is brown. Available in pastel shades.</td>
</tr>
</tbody>
</table>

Table 2. BOXBOARDs USED IN PACKAGING: FOURDRINIER MACHINE GRADES

<table>
<thead>
<tr>
<th>Board</th>
<th>Uses</th>
<th>Chief Characteristics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Uncoated solid bleached sulfate</td>
<td>Waxed, polycoated, or plain frozen-food cartons.</td>
<td>Strong white board. Hard-sized for water resistance and extended service under freezer conditions. Good bending. 100% sulfate pulp.</td>
</tr>
<tr>
<td>Clay-coated solid bleached sulfate</td>
<td>Cartons suitable for pharmaceuticals, cosmetics, hardware.</td>
<td>Excellent printability, scoring, folding, and die-cutting; ovenable. Outstanding merchandising appeal. Takes all types of coatings. 100% sulfate pulp.</td>
</tr>
<tr>
<td>Clay-coated solid unbleached sulfate</td>
<td>Heavy-duty packages; beverage carriers; folding cartons for food, cosmetics, textiles, housewares.</td>
<td>Strong, moisture-resistant board. Excellent printing surface.</td>
</tr>
<tr>
<td>Type</td>
<td>Uses</td>
<td>Characteristics</td>
</tr>
<tr>
<td>---</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Flat or dull finish, coated and uncoated</td>
<td>Box wraps for gifts, cosmetics, jewelry.</td>
<td>Smooth, excellent printing surface. Good for embossing.</td>
</tr>
<tr>
<td>Glossy finish, supercalendered</td>
<td>Labels, displays, box coverings.</td>
<td>For quality printing. Embosses well.</td>
</tr>
<tr>
<td>Cast coated</td>
<td>Box wraps, gift wraps, labels.</td>
<td>Smooth, high gloss. Brilliant white and colors. Excellent printability. Scuff resistant.</td>
</tr>
<tr>
<td>Flint</td>
<td>Box and gift wraps, labels for cosmetics, gifts.</td>
<td>Extremely fine-quality surface, high gloss. Wide color range.</td>
</tr>
<tr>
<td>Metallic-finish Argentine</td>
<td>Box wraps and overwraps, luxury items. Gift packages.</td>
<td>Has decorative effect of foil but is less costly. Lacquer lends gold or colored look.</td>
</tr>
<tr>
<td>Gravure printed</td>
<td>Boxes, displays, labels, platforms.</td>
<td>Printed with metallic powders mixed with lacquer.</td>
</tr>
<tr>
<td>Half-fine, half-fine embossed</td>
<td>Specialty boxes for cosmetics.</td>
<td>Embossed, continuous metallic surface. Wide color range. Elegant, rich.</td>
</tr>
<tr>
<td>Pyroxylin</td>
<td>Box coverings, food wrappers for high-quality items.</td>
<td>Metallic tones. Bronze, aluminum, or copper ground into pyroxylin lacquer.</td>
</tr>
<tr>
<td>Vacuum metallized</td>
<td>Labels for canned goods, batteries, wrappers for food and confectionary products.</td>
<td>Produced by vacuum metal-vapor deposit method.</td>
</tr>
<tr>
<td>Flock</td>
<td>Platform coverings, linings for gift boxes.</td>
<td>Flock of cotton adhered to surface of paper to create soft, velvety look.</td>
</tr>
<tr>
<td>Foam paper</td>
<td>Protective cushioning for wraps, platforms, pads, box coverings.</td>
<td>Foamed polystyrene sheet laminated to paper. Lustrous finish; wide range of colors.</td>
</tr>
<tr>
<td>Glitter</td>
<td>Box coverings, platforms.</td>
<td>Specks of metal embedded in paper surface.</td>
</tr>
<tr>
<td>Iridescent or pearlescent coating</td>
<td>Luxury items, wraps, platforms.</td>
<td>Mother-of-pearl effect.</td>
</tr>
<tr>
<td>Tissue</td>
<td>Used for jewelry, flowers, fruit, hosiery. Specially treated and designed for visual appeal.</td>
<td>Treated for texture, water, resistance, printability.</td>
</tr>
<tr>
<td>Glassine</td>
<td>Laminated trays for candies and other food products.</td>
<td>Grease and oil resistant.</td>
</tr>
<tr>
<td>Parchment</td>
<td>Wrapper, liner for greasy or oily items.</td>
<td>Water resistant, high wet strength. Lacquered or waxed base.</td>
</tr>
<tr>
<td>Polyethylene and saran-coated kraft</td>
<td>Widely used for food products. Cereal and cracker cartons, bread wraps.</td>
<td>Excellent barrier to moisture.</td>
</tr>
</tbody>
</table>
Perforation length depends on the thickness of the card stock.
CORNER LOCK VARIATIONS
The Folding Carton
The cracker barrel and the flour sack were once the standard packages in the grocery trade. Today this method of “bulk packaging” has given way to a system in which small units are produced at manufacturing plants. The product is placed in paper containers made from a wide variety of boards.

Once in the hands of the consumer, a product may not be used all at once but only partially consumed. The package therefore must allow the consumer to remove a portion of the product without destroying the container. Dispensing of the contents over time is an important function of packages. Finding ways to protect and preserve products for future use is a primary concern of packagers.

With the advent of new methods of marketing and merchandising, packages now must be designed to be selected by the consumer without the help of a sales clerk. This development has given manufacturers and dealers an opportunity to enhance their products through the graphic and structural design of the package.

The shape, size, proportions, and material (board) of packages depend on the size and type of product they contain. To most people, the folding carton is the most familiar type of paper container. It is economical in terms of both material and production costs. Being collapsible, it takes up minimal space during shipment or storage. The versatility of the folding carton adds value and sales appeal to the product. The most advanced printing, embossing, and decorating techniques can be utilized to enhance the carton’s appearance.

HISTORY OF THE FOLDING CARTON

The annals of invention are crowded with stories of fortunate accidents. Packaging is no exception. It happened in 1879 in the Brooklyn factory of Robert Gair, a successful printer and manufacturer of packaging materials. Gair was inspecting a printed seed package that had been accidentally slashed by a printing plate that had been improperly positioned on the press.

The revelation came to him: Why not create a die ruled for cutting and scoring a blank (paperboard) in a single impression? The idea worked, and the first machine-made folding carton was born.

In 1896 the first cartons of crackers appeared in stores, with a sealed inner bag to keep the product fresh. National Biscuit Co. was the first U.S. manufacturer to use this new packaging medium. The brand name was Uneeda, a name that is still in use.

By 1923 there were 200 manufacturers of folding cartons. By 1980 the number had grown to about 700 plants, which together use three and a half million tons of paperboard annually.

There are many variations in the construction of folding cartons. The modifications that can be made in the basic pattern are limited only by the designer’s imagination.

Today folding cartons are precision-made. Low-cost packages are supplied in knock-down form and are known as blanks. When assembled, they become three-dimensional rigid packages. They can be filled by high-speed automatic, semiautomatic, or hand-operated equipment. Knock-down containers lend themselves to various types of marketing and retailing systems, notably those that handle food, gifts, pharmaceuticals, cosmetics, toys, hardware, and housewares.

THE TRAY-STYLE CARTON

One of the basic types of folding carton is the tray. In one type of tray-style carton, a solid bottom is hinged to wide side and end
walls. The sides and ends are connected by a flap, hook, locking tab, or lock. These cartons have a variety of cover and flap parts extending from the walls and sides of the tray.

In another type of tray carton, two pieces, one slightly smaller than the other, form the base and cover of a two-piece telescoping box. Typical tray packages include cigarette cartons, bakery trays, ice cream cartons, pizza cartons, and garment carriers.

THE TUBE-STYLE CARTON

Another basic type of folding carton is the *tube*. The body of the tube-style carton is a sheet of board that is folded over and glued against its edges to form a rectangular sleeve. It has openings on the top and bottom that are closed with flaps, reverse or straight tucks, and locks.

Tube-style cartons give the product fully enclosed protection. They are used for bottled products, cosmetics, and pharmaceuticals. Often a window is added so that the consumer can see the product. Many unusual tube types and styles are available, including contoured, triangular, octagonal, and even rounded shapes. The following pages present a variety of folding-carton patterns. They can be constructed in any size from board or sheet plastic (acetate).

COSMETICS, PHARMACEUTICALS, AND PROMOTIONAL PACKAGING

The cosmetics industry was the first to effectively use packaging, and is still inspiration for the most creative types of packaging.

The history of cosmetics goes back thousands of years. The Bible describes the practice of anointing the head and body with oil. Primitive tribal symbols applied to the face and body were used to frighten enemies in various cultures in Africa, North and South America, and Oceania. Another traditional use of cosmetics is to attract members of the opposite sex. (The most famous figure associated with this practice is Cleopatra, the last queen of Egypt, who was renowned for her skill in making and applying cosmetics.) The ancient Greeks and Romans were great users of all types of cosmetics—hair dyes, creams, makeup, and the most important toiletry, soap, which was invented around 100 A.D.

In the seventeenth century Queen Elizabeth I used dyes (red) for her hair as well as fragrances; some of the most well-known historical figures of this period never bathed, but used perfumes and rosewater to counteract body odors and dirt.

The wholesale manufacturing of cosmetics and toiletries began in France during the reign of the “Sun King,” Louis XIV (1643-1713). During the Napoleonic era in the early 1800s, it became a major industry.

Cosmetics packages have the look of luxury and elegance. The standard cosmetics container is a folding or set-up carton embellished with rich colors, textures, and graphics. It attempts to portray the consumer as potentially beautiful, desirable, and elegant. From the marketing point of view, the cosmetics package is selling hope.

Pharmaceuticals are another important area for the packaging industry. There are about 1,000 drug-manufacturing companies in the United States. Pharmaceuticals packaging uses all types of packaging materials, including paper, board, and plastics.

Over-the-counter drugs must have sales appeal, and packaging plays an important role in providing that appeal. The folding carton encloses a glass or plastic container for the medication. The carton provides protection as well as serving as a promotional tool.
Pharmaceuticals packaging involves several factors, including moisture and oxygen control to preserve the potency of the medication; volatility and light protection to protect the drug against exposure to harmful ultraviolet rays; and protection against heat, which can cause deterioration of the product. Safety also plays a significant role. Many items (e.g., surgical dressings, injectables) must be kept sterile until they are used. The packaging must also be childproof and tamperproof.

The requirements for packaging of cosmetics and pharmaceuticals are very similar. In both cases manufacture and distribution is strictly regulated by the Food and Drug Administration.

Promotional packaging was originally used by the pharmaceuticals industry for the introduction and promotion of new products. The packages were sent to physicians. Gradually these packages became a total-communication effort. In addition to product samples, the package contained descriptive literature, reply cards, and videotapes. Manufacturers of other products and services soon followed the lead of the pharmaceuticals industry, and promotional packaging is now used by all major industries. Examples of mailers and other imaginative promotional packages are shown on the following pages.

UNUSUAL APPROACHES TO CARTON AND BOX CONSTRUCTION

Designers today are increasingly interested in technology. Computer-aided design, for example, enables them to create or alter concepts in minutes. Such technological advances have reduced the need for handwork and special skills. However, student and professional designers alike have a tendency to cling to familiar methods and skills, which give them a feeling of self-fulfillment.

Like new technologies, economic factors appear to limit the possibilities for design, yet they can actually stimulate innovation. An example is the revitalization of folding-carton design that occurred as a result of the prohibitive cost of set-up boxes and the increasing cost of hand labor.

Many of the following pages present examples of structural experiments. They reflect the exciting experimental work being done in schools of design. Innovations in design like those shown here can strongly influence the marketing of a product, often surpassing even the expectations of the client.
Trays
The Folding Carton

OPEN-ENDED TRAY, TWO-CORNER BRIGHTWOOD STYLE

open-ended tray, variation
Open-ended collapsible tray—variation
Glued-up tray with protective end panels
GLUED-UP TRAY WITH PROTECTIVE END PANELS AND TAPERED SIDE PANELS
FOUR-CORNER BEERS-STYLE TRAY– INFOLD/OUTFOLD

Four-corner brightwood-style tray
Corner lock tray with top labeling flaps
ANCHOR LOCK TRAY
T-lock tray with beveled side and end panels
GLUED-CORNER TAPERED TRAY

Glue- or heat-sealed tapered tray with flange
GLUED-CORNER TAPERED WITH TOP-LOCK TAB
ONE-PIECE BRIGHTWOOD TRAY WITH HINGED COVER

Six-corner brightwood-style tray
DOUBLE-WALL TRAY WITH DOUBLE-WALL LID

The Folding Carton
ONE-PIECE BEERS INFOLD WITH DUSTFLAPS OFF COVER
ONE-PIECE BEERS FOUR-CORNER INFOLD WITH COVER
SIX-CORNER GLUE-STYLE TRAY
TRAY WITH SCALLOPED SIDE PANELS
The Folding Carton

STRIPPER LOCK TRAY WITH HINGED COVER
TWO-PIECE FULL TELESCOPING BRIGHTWOOD-STYLE TRAY
TWO-PIECE FULL TELESCOPING HARDWARE-STYLE TRAY WITH LOCK ENDS
FULL TELESCOPING TRAY WITH LOCK CORNERS
TRUE LOCK-STYLE TRAY WITH GLUED COVER TEAR-AWAY STRIP
SEAL-END-STYLE TRAY WITH PERFORATED TEAR-AWAY TOP
Ideal for a small tissue dispenser that fits in pocket-book or briefcase.
This ice cream carton variation has both perforated side deals and a zipper opening in front.
CORNER LOCK TRAY WITH TEAR-AWAY FEATURES ON LID SIDES AND FRONT
The Folding Carton

SINGLE SIDE WALL, DOUBLE END WALL PINCH LOCK TRAY

WALKER LOCK TRAY
SINGLE END WALL, DOUBLE SIDE WALL TRAY
FOOT-LOCK DOUBLE WALL TRAY
SIMPLEX STYLE TRAY (QUICKSET)
DOUBLE END WALL, SINGLE SIDE WALL TRAY

ARTHUR LOCK OR JONES LOCK TRAY
DOUBLE SIDE WALL AND DOUBLE BOTTOM TRAY
SIMPLEX STYLE TRAY, WEB CORNER SPOT-GLUED
The Folding Carton

FRAME VIEW TRAY (VARIATION)
This tray was used for crafts projects and features an enclosed compartment for small parts.
Combined with the overwrap pattern on the following page, this package lends itself to numerous graphic possibilities.
This wrap fits around the view tray of the preceding page; the four flaps fit neatly inside the tray.
ONE-PIECE SHADOW BOX
TAPERED TRAY WITH CONVEX FRONT COVER PANEL AND LOCK TAB
SIMPLEX STYLE VARIATION WITH TAPERED OUTSIDE END AND SIDE WALLS
TAPERED SIDEWALL WITH ARTHUR LOCKS AND DOUBLE HOLLOW SIDE WALLS
TRIANGULAR TRAY WITH GLUED CORNERS

SELF-COVERED TRIANGLE WITH LOCK TABS OFF COVER
HEXAGON-STYLE TRAY
DOUBLE-WALLED OCTAGON-STYLE TRAY WITH FOOT LOCKS
SIX-SIDED DOUBLE-WALLED TRAY AND PARTIAL TELESCOPING COVER
This specially constructed tray has a tapered interior that makes it an excellent container for pens and similar items.
This variation of the preceding pattern is adaptable for multiunit packaging.
Two Simplex-style trays with the partition on the following page make an interesting design for a four-compartment tray.
The notches in the lower part of the partition will lock into the partial double side walls of the tray.
This variation of the Simplex-style tray has two double walled cover sections that meet in the top center. The insert illustrated on the following page indicates the many possibilities inherent in these patterns. This package was sealed with a self-adhesive gold-foil sticker.
The insert may be die-cut and scored in any configuration desired.
A more complex example of a frame view tray.
This one-piece scored and die-cut tray may be used for eggs, fruit, candy, and the like.
Tubes
FULL OVERLAP SEAL END WITH VAN BUREN EARS AT BOTTOM
FULL OVERLAP SEAL END WITH PRE-PERFORATED POUR SPOUT
ECONOMY SEAL END (VARIATION)
PARTIAL OVERLAP SEAL END WITH LOCK TAB AND LOCK SLOT
AIRPLANE STYLE STRAIGHT TUCK
BELLOWS TUCK TOP, HIMES LOCK AUTOMATIC BOTTOM
(ALSO KNOWN AS CRASH LOCK)
OPEN THROAT WITH TUCK LOCKS
STRAIGHT TUCK WITH DRUGSTORE LOCK
The Folding Carton

FRICITION TUCK TOP, SNAP-LOCK (OR HOUGHLAND) BOTTOM
The Folding Carton

REINFORCED SNAP-LOCK (OR HOUGHLAND) BOTTOM
COMBINATION ARTHUR LOCK WITH REVERSE TUCK

The Folding Carton
The Folding Carton

QUAD-LOCK EAR-HOOK DOUBLE-LOCK BOTTOM
EAR-HOOK BOTTOM VARIATION
FULL-FLAP AUTOMATIC BOTTOM
A typical butter carton
Especially useful for heavy loads
The Folding Carton

SEAL END WITH ZIPPER
The Folding Carton

SEAL END WITH LOCK TAB AND ZIPPER
The Folding Carton

PARTIAL OVERLAP SEAL END WITH PERFORATED TOP

A tissue dispenser
A tissue dispenser.
The Folding Carton

TOP-SEAL BACON PACK
REVERSE TUCK WITH FACETED TOP
REVERSE TUCK WITH TAPERED TOP
The Folding Carton

SLANTED TOP WITH HANG TAG
STRAIGHT TUCK WITH FIFTH PANEL
The double fifth panel permits printing on one side of the board, with copy appearing on the back panel.
STRAIGHT TUCK WITH INSIDE BOTTOM PLATFORM
REVERSE TUCK WITH DIE-CUT BOTTOM AND HANG TAG

Specially designed for light bulbs
REVERSE TUCK WITH PARTITION FORMED BY THE DIE-CUT WINDOW
STRAIGHT TUCK WITH SPECIALLY FORMED PARTITION ATTACHED TO DUST FLAP
REVERSE TUCK WITH SPECIALY CONSTRUCTED PARTITION
STRAIGHT TUCK WITH TWO COMPARTMENTS
STRAIGHT TUCK WITH SPECIAL COMPARTMENTS
REVERSE TUCK WITH THREE COMPARTMENTS
SIDE-BY-SIDE REVERSE TUCK/STRAIGHT TUCK CARTONS, VARYING IN HEIGHT
SIDE-BY-SIDE STRAIGHT TUCK CARTONS, IDENTICAL HEIGHT
PACKAGE FOR A PHARMACEUTICAL PRODUCT, WITH HANGING PANEL
DOUBLE-COVER WINDOW BOX
The special effect is created by the concave top and convex front or face panel.
Alternating closure creates an interesting graphic effect that may be enhanced with color.
The curved scores on this pattern create a concave top and bottom and convex front, side, and back panels. The tension of the scores keeps both top and bottom close.
Specialty closure on top panels gives free rein to many graphic solutions.
Specially shaped top closure creates an interesting concave/convex interplay.
Combined with the decorative top on the following page, this makes a handsome package with many graphic design possibilities.
TAPERED TUCK TOP WITH CARRYING HANDLE
Scored front, back, and side panels lend themselves to cord or ribbon decoration.
FULL-FLAP AUTOMATIC BOTTOM, TAPERED TOP WITH LOCK TABS AND CARRYING HANDLE

HOOK-TAB CLOSURE WITH TAPERED SIDES
TAPERED SIDES, 1-2-3 BOTTOM TONGUE LOCK, TOP PANEL WITH CENTERED CARRYING HANDLE
STRAIGHT TUCK WITH CENTERED HANDLE
The typical milk carton lends itself to many different applications. (©Excello)
One variation of the milk carton style container has a slit/loop closure.
The curvilinear scores in the four riser panels serve as a unique decorative alternative.
This container and the one on the following page lend themselves to great graphic applications.
This multifaceted pentagonal box has both visual and tactile appeal.
A different treatment of the top side-panel scores and closure tab. This carton features an auto-lock bottom.
Manipulating the panel by means of die cuts creates many interesting design variations.
BOTTOM TUCK, TOP SNAP-IN COVER
REVERSE TUCK, TAPERED CONTAINER
In combination with the patterns for the inserts on the facing page, this package with carrying handle was created for six small body lotion bottles.
SIX-UNIT INSERT FOR DOUBLE-WINDOW BOX
DOME TOP WITH SPECIAL TAB CLOSURE, GREENLEAF BOTTOM
MULTIPLE-SCORED TOP PANEL WITH STRAIGHT TUCK BOTTOM
SPECIALLY SCORED TOP AND BOTTOM WITH FULL OVERLAP LOCK
TAB AND SLIT
A carton with a variation of Arthur locks and 1-2-3 bottom develops into an attractive alternative packaging form.
PUSH-IN LOCK TOP WITH GREENLEAF BOTTOM
REVERSE TUCK WITH SPECIAL DISPENSER PANEL

Ideal for ribbons, tape, etc.

TWO-COMPARTMENT DISPENSER WITH TEAR-AWAY CLOSURE
This quadruple box is ideal for sets of items such as cosmetics.
The eight cubes interlock at the dust flaps as indicated. This allows for many graphic innovations.
This one-piece shadow box, designed by Yick-Man Liu, lends itself to a great assortment of graphics and makes a beautiful gift package.
This is but one of the many design possibilities for top closure.
CARRIER WITH HEART WINDOW
PUSH-DOWN OPENING TOP
This package opens when the sleeve at the top is pushed down.
PUSH-DOWN OPENING TOP VARIATION
As the top overlapping sleeve is pushed down, the triangular closure shapes open. Sliding the sleeve up will close the top.
Curved scores create many interesting effects, which may be enhanced by innovative printing.
ROUND SNAP-LOCK TOP

The Folding Carton
TRIANGULAR SNAP-LOCK TOP
Creative manipulation of the side scores will produce exciting panels.
Use this box as a stand alone or in combination with the sleeve on the next page.
This is just one of the many design possibilities.
This straight tuck carton, with its concave front and back panels, has many design possibilities.
CONVEX/CONCAVE PACKAGE
This pattern creates partial concave/convex front, side, and back panels.
The many curves on this carton allow for a beautiful interplay of shadows.
Tab “A” spot may be glued.
MULTIFACETED BOX
“A” tabs may be glued.
LANTERN-SHAPED CANDY BOX
FOUR-CORNER ARCUATE FLUTING
TUBE-STYLE CARTON WITH CONCAVE CORNERS

See next pattern for the closure
TOP FOR TUBE-STYLE CARTON (PREVIOUS PATTERN)
TRIANGLE WITH TUCK CLOSURES AND TEAR-AWAY ZIPPER STRIP

TRIANGLE WITH AUTO-LOCK BOTTOM
The scores in the panels create a fifth riser panel on this carton.
The side and top panels of this carton allow for great graphic visibility.
REVERSE TUCK DIAMOND-SHAPED CARTON
The additional score would be needed in order to ship the carton flat.
SIX-SIDED CARTON WITH STRAIGHT TUCKS
(PAT #3,148,443)
An alternate version of a six-sided package.
SIX-FACETED CANDY BOX
FIVE-SIDED TUCK
HEXAGON WITH GREENLEAF TOP AND BOTTOM
The small triangles have been die-cut out of the top closure to permit easier closing.
SIX-SIDED CARTON WITH PUSH-IN CLOSURE AND AUTOMATIC GLUED BOTTOM
A variation of the previous two patterns, this carton also has an auto-glued bottom.
HEXAGONAL TAPERED BOX WITH PUSH-IN TOP AND BOTTOM
A variation of the 1-2-3 bottom.
SIX-SIDED DISPENSER PACKAGE WITH TEAR-AWAY OPENING
(Pat. Kikkoki)
This candy package features a reclosable perforated opening.
This carton has an intriguing shape created by the scoring of the riser panels.
By alternating the scores, a totally different effect may be obtained.
This and the following patterns may be executed in many different stocks. With die-cut shapes to match their products, they make ideal holiday gifts/ornaments.
BIRDHOUSE SHAPED OPEN CONTAINER

DIAMOND-SHAPED OPEN CONTAINER
This house-shaped package only needs to be decorated to fit the specific needs of the product.
Lock tab and slit options make this package totally glue free.
This package also requires no glue.
A container that depicts a traditional Dutch Burgher house makes an attractive keepsake.
A somewhat more complex pattern could lead to a series of keepsakes.
This package lends itself to recreations of famous buildings by means of creative die-cutting of windows and graphics.
With the fifth panel we created an awning over the first “floor”
An alternative approach to the pattern on the preceding page.
This little flower stall is an ideal package for cosmetics.
The shape of this box speaks for itself. An inserted pouch will make up for the holes created by the die-cut wheels.
This novelty item requires no glue.
The Folding Carton

RAILROAD COACH
The die-cut images on the front may be altered to suit the occasion.
This old-fashioned sleigh has graphic application possibilities.
This accordion is held together with the strap provided.
Spot gluing of the flap off the lid helps keep the package closed.

The flaps off the lid lock into the shortened dustflaps.
Straight and curved scores permit a wide range of variations.
An inserted platform will allow this package to serve many functions.
This exciting package uses an elasticized string as a closing device.
This beautiful candy package could be used as holiday ornament.
Designed by David James & Associates, this tea package lends itself to a variety of applications.
Sleeves, Wraps, and Folders
OPEN-END SIMPLE GLUED SLEEVE
OPEN-END SLEEVE WITH FINGER HOLES FOR EASY ACCESS

Typically used for videotape cassettes.
OPEN-END SLEEVE WITH RECESSED PRODUCT RETAINERS
Typical construction for a fragile product (e.g., light bulbs). (Pat. #3,082,931)
The tension of the inner panel die-cuts help keep the product in place.
FIVE-PANEL SINGLE LIGHT-BULB SLEEVE
Both the cover and the infolds may be constructed to fit any product.
ALTERNATE CONSTRUCTION FOR LIGHT-BULB SLEEVE
LIGHT-BULB SLEEVE VARIATION
The Folding Carton

DECORATIVE LIGHT-BULB SLEEVE

Grain Direction
The die-cut windows folded into the package act as separators.
The swiveling panels at each end panel help to lock as well as protect the fragile glass bulbs.
TWO-PIECE DISPENSER SLEEVE

The Folding Carton
TWO-PIECE DISPENSER SLEEVE (VARIATION)
TYPICAL CIGARETTE SLEEVE
MANSARD ROOF-SHAPED SLEEVE WITH SLIDE-OUT TRAY
TWO-PIECE SLIDE DISPENSER
CONTAINER SLEEVE FOR FRENCH-FRIED POTATOES

May be adapted for many other product uses.

(PAT. #3,630,430)
This one-piece construction lends itself to a large variety of lightweight product packaging with maximum product visibility.
This double side wall/double end wall box is ideal for heavy hardware parts.
DOUBLE TRAY FOLDER WITH HANG TAG

The Folding Carton
This accordion fold wrap has a small zipper front.
OPEN-SIDED SLEEVE ADAPTABLE FOR CYLINDRICAL PRODUCTS
BOTTOM GLUED SINGLE-TUB SLEEVE
BOTTOM-LOCK SLEEVE WITH GUSSETED END PANELS
SIMPLE FOLDER FOR SHALLOW PRODUCTS

Used for scarves, hosiery, etc.

May be spot glued
SHALLOW SIDE WALL FOLDER WITH WINDOW FOR PRODUCT IDENTIFICATION

Perfect for hosiery
The lid will snap under the front dust flap.
Typically used for photographic prints and negatives. The scored gusset allows for expansion.
The Greenleaf style closure makes this sleeve easy to open for inspection of the product. A window may be die-cut in the package.
EAR-HOOK BACK PANEL WITH HANGING LOOP
This package is developed from two interlocking sleeves with a carrying handle.
This one-piece fold-over with gusseted side panels makes an ideal waterproof carrier. It is usually held together with a small metal carrying handle.
This two-piece wrap needs no glue and makes an excellent gift box, especially if made from different colored board.
This six-sided two-piece wrap is a variation of the previous pattern.
The lid with wings holds the four sides in place.

Adding four fold-over flaps on the riser panels, as in the next pattern, will serve as a locking device for the lid.
Folding the gussets to the exterior of the package creates an interesting visual effect.
This wrap makes a handsome container, without the use of adhesives.
A one-piece wrap that shows an interest-catching configuration on the sides.
A rearrangement of the panels and glue flaps alters the appearance.
DECORATIVE ENDS WRAP
This fold-over wrap has been partially scored in order to create a soft, rounded top when assembled.
GIFT WRAP WITH INTERLOCKING COVER
TYPICAL WRAP FOR CHOCOLATE BAR
LAYOUT FOR SOAP BAR WRAP
Suitable for cards as well as haberdashery items.
When taped shut, it makes an excellent mailer.
This box with Arthur locks and hook locks needs no glue. It makes an excellent container for jewelry items.
ONE-PIECE WRAP WITH LOCK TAB
FOLDER WITH HOOKS FOR STRING OR ELASTIC-BAND CLOSURE
A simple, economical, one-piece compact disc folder with good product protection, easy product access, and sufficient printing surface for product information.
I designed this one-piece package for maximum product protection and easy product access in mind. The lock tab can be sealed with a tamper-proof seal. The overall size conforms to existing CD packaging.
Two-piece 2 CD sleeve based on the old vinyl gramophone record packaging.
The Folding Carton

CD/DVD DISC HOLDER WITH INSTRUCTION MANUAL SPACE
This GW compact disc folder pops up when the outer sleeve is opened. The CD may be accessed by its spindle hole, thus avoiding contact with grooves.
The package is formed and sterilized around the product.
Also suitable for novelty items, hosiery, etc.
The end closures snap in.
FOLD-OVER WITH LOCK TABS

The Folding Carton
The small squares (A) serve to spot glue the curved riser panel tabs.
ASEPTIC JUICE PACK

The Folding Carton
PILLOW PACK
PILLOW PACK WITH HANDLE

Grain Direction
This pillow pack features a cushioned compartment.
PILLOW PACK VARIATION
PILLOW PACK VARIATION
The interlocking images serving as closures denote the season.
The Folding Carton
No glue required for assembly
SATCHEL BAG WITH HEXAGONAL BOTTOM
BAG WITH SIDE GUSSETS
Typical prototype for grocery bag, shopping bag, etc.
BAG WITH GLUED GUSSETED SIDES, CARRYING HANDLE, AND CLOSURE TAB
BAG WITH GREENLEAF BOTTOM, SIDE GUSSETS, AND HOOK LOCK CLOSURE
Himes lock bottom and reclosable top
The Folding Carton

GUSSETED PAPER BAG

Grain Direction
GUSSETED BAG WITH HIMES LOCK AUTOMATIC BOTTOM, GUSSETED SIDES, AND FLAPS ON COVER THAT LOCK INTO GUSSET
POUCH WITH HIMES LOCK AUTOMATIC BOTTOM, SIDE GUSSETS, AND REINFORCED SNAP-LOCK CLOSURE
An adaptation of the standard office file produces a neat package for soft goods.
BAG WITH HIMES LOCK AUTOMATIC BOTTOM, GUSSETED SIDES, AND CARRYING HANDLE WITH SNAP-LOCK CLOSURE
This carrying satchel with double anchor lock bottom and lock-tab/slit top is one of many possible variations.
This triangular carry-all needs no glue and may be used for many different gift items.
HEART-SHAPED PARTY FAVOR CONTAINER
The tabs at the side hold a writing instrument, which serves as a locking device.
TWO-PIECE, SINGLE-LAP CONTAINER WITH OUTSIDE ROLLED TOP AND INSIDE FOLDED BOTTOM

TWO-PIECE, SINGLE-LAP CONTAINER LID WITH INSIDE ROLLED TOP
TWO-PIECE, SINGLE-LAP, TAPERED CUP WITH INSIDE FOLDED BOTTOM AND OUTSIDE ROLLED TOP
Made from kraft paper with many scores to absorb the heat of the beverage.
TWO-PIECE SINGLE-LAP CONTAINER
Used predominantly as the core for rolls of paper and mailing tubes.

Spiral-wound tubes may be used as the basis for circular packaging.

Cosmetics and toiletries often make use of this form. The following page shows the use of a tube as the core of a novelty package.
Two spiral-wound tubes and two paperboard circles are assembled in the method of a set-up box. The bottom is spot glued to the base, the top circle is inside-rolled. The slightly larger tube slides over the bottom to create a top-hat.
SIDE-LOADED TUBE STYLE SIX-BOTTLE CARRIER
BOTTOM-GLUED SLEEVE WITH NECK AND HEEL APERTURE; NECK-THROUGH STYLE
SLEEVE-STYLE THREE-COUNT MULTIPACK ACE LOCK BOTTOM
ANDRE-MATIC CAN CARRIER WITH HEMMED EDGE
JONES-STYLE CARRIER WITH ECONOMY END
END-LOADED TUBE WITH REINFORCED HANDLE
END-LOADED BOTTLE CARRIER WITH TAPERED SIDES, REINFORCED HANDLE, AND SEPARATE INSERTS
TWELVE-COUNT CAN CARRIER WITH PRE-PERFORATED TEAR-OPEN STRIP
(PAT. #3,955,740)
SIX-BOTTLE WING-LOCKED SLEEVE WITH TOP AND BOTTOM CHIME LOCKS
When glued up and assembled, the handle will consist of four layers of board, the center divider of two layers, and the outside and bottom of a single layer.
LAYOUT AND CONSTRUCTION OF A SIX-COUNT BOTTLE CARRIER
GLUED BOTTOM-STRAP BOTTLE CARRIER
FOUR-COUNT BOTTLE CARRIER
FOUR-PARTITION BOTTLE CARRIER

The Folding Carton
A fast-food carry-out tray with Himes lock bottom.
This two-compartment carrier with snap lock or Houghland bottom lends itself to many applications.
The Set-Up or Rigid Paper Box
The word box is derived from the boxwood baskets made in ancient Rome. By the thirteenth century, the Chinese were making boxes from decorated cardboard made of rice chaff, in which they exported tea. In France, attractive boxes were made for hats, garments, cosmetics, and jewelry in the seventeenth and eighteenth centuries. These boxes were covered with hand-printed decorative papers and fabrics. During the nineteenth century, attractive boxes for toys and games were produced in Germany and England.

The first American boxes using paperboard were made in Boston by Colonel Andrew Dennison in 1844. The name Dennison is still associated with many kinds of paper products.

Store clerks often used crude wooden jigs to form cardboard into “cartons,” which were closed and tied with string. From this simple device the set-up box evolved. According to historians, it is possible that an artistic salesperson hand lettered the store’s name on the box. This event could be considered the birth of the brand name.

The set-up paper box is produced and delivered as a three-dimensional construction ready to be packed with merchandise. It is manufactured in a series of simple steps that do not require costly dies or machinery. Production runs can be small, medium, or large.

The basic set-up box can be modified to accommodate unusual requirements; transparent plastic domes and platforms, a variety of hinges, embossing, gold stamping, lids, and compartments can be added. The versatility of the set-up box is valuable because it adds to the display and gift appeal of boxed items. It is no accident that set-up boxes are so widely used in the merchandising of cosmetics, jewelry, candy, and gifts. The box not only provides protection but has great promotional value.

Set-up boxes are made from four basic materials: boxboard, corner stays, adhesives, and covering materials. The process is as follows:

1. Flat sheets of boxboard are cut and scored to size. Individual blanks are separated from the sheet and the corners are cut out.
2. The sides of the blank are folded at right angles to the base to form the sides of the tray.
3. The corners of the tray are sealed by adhering paper, fabric, or metal to reinforce the corners.
4. The decorative covering is adhered to the box.

Variations in the basic shape and dimensions of boxes can be made in order to produce an infinite range of designs. Possible shapes include cubes, pyramids, cones, hearts, and stars. Boxes with hinged lids, telescoping boxes, boxes with compartments, boxes with slide-in drawers, and boxes with plastic thermoformed platforms can also be designed. Coverings or wraps may be selected from a wide range of papers or fabrics, which provide both protection and decorative effect.
The Set-Up or Rigid Paper Box

A single board is covered with cover stock on the outside, with edges overlapping the inside. The inside is covered with cover stock slightly smaller than the overall dimension.
Two pieces of board are attached with hinging tape, then covered with cover stock.
1. The stock is scored with cutting dies that cut approximately halfway through the board. The corners are then cut away so that only the bottom and side panels remain. The side panels are bent up and fastened at the corners with stay tape.
2. The assembled box is placed on a precut, preglued sheet of cover stock, which is folded around the outside and partially into the inside of the box.
CONSTRUCTION OF A SET-UP BOX FOR A PERFUME BOTTLE

1. Since it is somewhat difficult to score the board from which you are preparing the set-up-box model, we often use single-weight illustration board and cut each piece separately. Consider the thickness of the board in the dimensions.

2. The pieces here have been cut out of $\frac{3}{8}"$-thick illustration board. The side walls are glued on the base with white glue; then the end pieces are fitted in. White masking tape is used in lieu of stay tape.
3. The assembly is covered with a nice cover stock. For this you may use rubber cement or, preferably, bookbinder’s glue.
4. Next we build a platform with an oval cutout. This platform is measured to fit snugly into the tray we have just completed. When measuring, consider also the thickness of the cover stock and adjust the size of the platform accordingly.
CONSTRUCTION OF A SET-UP BOX FOR A PERFUME BOTTLE

5. Here we have the top and four sides of the lid, which should have the same width and depth as the base, since it will fit over the platform.

6. This insert is for the lid and need not be covered with cover stock.
CONSTRUCTION OF A SET-UP BOX FOR A PERFUME BOTTLE

7. Glue the insert into the lid; the circle was cut to fit the cap of the bottle to be packaged.

8. The platform may be glued into the base; the result is a handsome rigid or set-up box. If you wish a small part of the platform to show, you need only place an additional liner inside the cover. This will prevent the cover from sliding all the way down to the base.
This is a folded piece of boxboard to be used as an insert for the following rigid box.
Here the folding insert is glued into the lined base.
This is the cover for the box in the preceding two drawings.
The lid is hinged partially by the board and partially by the cover stock.
TAPERED TRAY WITH LID

This is the pattern for the cover stock of the tapered tray with lid.
These are inserts for the tray illustrated on the preceding page. The top would be a typical insert for a souvenir spoon. The bottom insert would be for an item such as a pen.
TRAY WITH FULL TELESCOPING LID
A platform for necklace and earrings.

A platform for the box illustrated on the preceding page. This would be ideal for a necklace.
Slanted platforms for jewelry such as a tie pin or stickpin.
This box has side panels that are slightly higher than the front and back. Once the lid has been attached with hinging tape and/or the cover stock, the front of the lid will rest on the top of the front panel.
The tray is assembled and glued to the platform. Then the assembly is covered with cover stock.
HINGED BOX WITH RAISED PLATFORM

The Set-Up or Rigid Paper Box
The three pieces that form the outside of the box have been fastened together with hinging tape, then covered.

This box simulates a book; the spine may be shaped in order to carry the illusion even further.
The platform may be die-cut to fit the shape to be packaged.
Set-up boxes may be manufactured in many shapes. This triangular box with raised platform is only one of the many geometric possibilities.
This tray and slide makes an interesting alternative. The small blocks may be inserted in the sleeves after complete assembly so as to prevent the tray from being pulled all the way out of the sleeves. A platform of any shape may be inserted.
This three-piece box has a separate lid that has been attached with hinging tape and rests on the insert when closed. A small piece of ribbon has been attached to the lid under the cover stock as an opening device. Another ribbon could be attached to the lid and side panel to keep the lid from opening too far, as well as to keep the lid in an open position.
This file box may be used for documents, diskettes, or, with the proper insert platform, cosmetic items.
The first stages for a four-drawer cabinet are the outer sleeve and four inner sleeves to act as drawer guides.
Upon assembly, the face of the drawer guides may be covered with cover stock. Then the outer sleeve is covered with either the same or a contrasting cover.
The drawers, when assembled, should be covered and checked for a snug fit. Any available hardware may be used as drawer pulls.
The first stage of this box, which has eleven separate components, is the assembly of the box, lid, and front panel lid. The cover and lid are attached with hinging tape, then covered with cover stock.
Subsequent steps are insertion of a die-cut platform into the lid, attachment of a slightly higher inner sleeve that allows room for the front to close flush with the sides, and attachment of an additional piece to the front cover that permits it to be locked in place when the lid is closed over it.
Finally, the base platform is assembled and inserted into the bottom of the box.
Many varieties of platforms may be assembled in order to create visual excitement.
As long as the platforms have been made to the correct size, they may be inserted in various directions. In this example, the front of the set-up box may be oriented either way, and the lid may be attached accordingly.
Corrugated Containers
Fluted medium, the heart of the corrugated board, is one of the most unusual of all packaging materials. Originally, it was an article of wear. In the mid-nineteenth century, men’s hats were fashioned with a sweatband of fluted paper. In 1871, an American, Albert L. Johnes, patented fluted medium for the protection of bottles during storage and shipment. Three years later another American, Oliver Long, patented a process for sandwiching the fluted medium between paperboard sheets. This was the origin of corrugated containers, the workhorse of the packaging industry.

THE STRUCTURE OF CORRUGATED BOARD

The basic structure of corrugated board is simple. It consists of a fluted sheet glued to one or more liners. The most common construction is a sheet of “corrugated medium” sandwiched between two liners. A wide variety of combinations are possible, depending on packaging requirements. Where great strength is required, the three sheets of medium can be combined with appropriate liners.

The structural characteristics of corrugated board are governed by four variables: (1) the strength of the liners, (2) the strength of the corrugated medium, (3) the height and number of flutes per foot, and (4) the number of walls (single, double, or triple).
Corrugated Containers

- Unlined Corrugated (A-flute)
- Single Face Corrugated (A-flute)
- Single Wall (Double Face) Corrugated (A-flute)
- Double Wall (A- and C-flute)
A number of flute structures are available, depending on packaging specifications. A-flute has great capacity to absorb shocks owing to the wider spacing of the flutes. B-flute, because of the larger number of flutes per foot, provides maximum crush resistance. C-flute combines the properties of the first two types, and E-flute is used where very thin corrugated board is recommended. In addition, a new grade of corrugated board has recently been developed that has a series of uniquely formed grooves and ridges that are smaller than those in the E-flute and that has 15–20% more ridges per lineal foot than the E-flute.

So universal is the use of corrugated board that its production is viewed as a barometer of the economy as a whole. It is hard to imagine products that cannot be packaged and shipped in corrugated boxes. Today more than 1,160 products—including live fish!—are shipped in corrugated boxes.

Corrugated board is used in multicolored shippers and point-of-purchase displays. It is among the least expensive of all packaging materials.

DESIGNING A CORRUGATED BOX

The design of a corrugated box is a major undertaking. The process of selecting the correct package design for a particular product has grown more complex as new technologies and materials present ever-increasing manufacturing options.

The ways in which corrugated board may be used are practically limitless. Certain basic container styles and designs are suitable for packaging a wide range of products. There are some corrugated interior devices (platforms, padding, or inserts) and plastics (molded polystyrene foam) used to provide reinforcement, bracing, and shock absorption. These are illustrated and described on pages 541-578.
Specially containers are tailored to the requirements of a particular product. Those requirements may involve everything from the “shipability” of the product itself to how the container is filled, stored, loaded, stacked, braced, chopped, and unpacked. Specialty or custom-made boxes are usually required for special products in large quantities (10,000 or more). Master cartons, which are shipping cartons that hold smaller cartons, are used for food, detergents, housewares, and hardwares.

Government and industry standards and regulations are designed to protect the users of cartons. There are laws pertaining to method of shipment, such as rail, air freight, truck, and parcel post (U.S. Postal Service). In addition, all corrugated materials and cartons must be certified by the manufacturer. Weight, paper content, and puncture and bursting test certificates must be displayed on all corrugated boxes.

A significant trend in corrugated technology is impregnating and coating corrugated board with waxes and plastics. The moisture-resistant coating permits reuse of the carton and shipment of products, such as produce, that were previously shipped in expensive wooded crates and barrels.

PRINTING ON CORRUGATED BOARD

Direct printing on brown corrugated board, which has a highly absorbent surface, is usually limited to the use of line art. This is the least expensive type of printing usable on corrugated board. Letterpress and, more recently, flexography are the typical printing methods.

Preprint is a term used to refer to the process in which a roll of printed stock is used as the top liner in making corrugated sheet. Flexography and rotogravure are the printing methods used in most preprint processes. The surface may be kraft, white clay-coated kraft, clay-coated bleached liner, or foil. The set-up costs for preprinting are high.

It is difficult to print full color on most corrugated board, with the exception of E-flute. Therefore, labels are often prepared to cover the boxes on one or more of their sides: full-sized labels cover the top and all four sides of a box; partial labels may be used only on the top of a box or on one or two of its sides. There are several variations of label application, including lamination onto the box, depending on size, shape, and cost considerations.

Litho labeling refers to lithographic printing of a sheet of paper that is then adhered (laminated) to corrugated board. Labels can be full or partial. Litho labeling and laminations are used on large boxes for toys, games, housewares, and sporting goods.
Glued joint: the manufacturer's joint tab is glued to the inside of the box.

Taped joint: the side and end panels are taped from the outside of the box. No manufacturer's joint tab is needed.

Stitched joint: the lap is stapled to the outside of the box.

Stitched joint: the lap is stapled to the inside of the box.
OVERLAP SLOTTED CONTAINER
(Intl. Box Code 0202)
HALF SLOTTED BOX (TAPED) WITH COVER (STAPLED)
(Intl. Box Code 0312)
CORRUGATED CONTAINERS

CENTER SPECIAL SLOTTED CONTAINER
(Intl. Box Code 0204)
REGULAR SLOTTED CONTAINER
(Intl. Box Code 0201)
CENTER SPECIAL OVERLAP SLOTTED CONTAINER
(Intl. Box Code 0205)

Corrugated Containers
WRAPAROUND BLANK

Corrugated Containers

478
Corrugated Containers

DOUBLE SLIDE BOX
(Intl. Box Code 0510)
SINGLE-LINED SLIDE BOX
(Intl. Box Code 0510)
Corrugated Containers

TRIPLE-SLIDE BOX
FULL TELESCOPE DESIGN-STYLE BOX
(Intl. Box Code 0301)
#2 BLISS BOX
(Intl. Box Code 0605)
RECESSED-END BOX
(Intl. Box Code 0610)
Container with auto-lock bottom variation and unique top closure makes for easy loading/unloading.
With auto-lock bottom and self-locking top closure.
This eight-count two-liter soft drink carrier uses a minimum of corrugated board and serves as a display unit.
Double-over inner walls, hinged from the top, secure side panels in place. The two layers of the bottom and front wall as well as the triple sidewalls with carrying handles produce an excellent container for files.
INTERLOCKING DOUBLE COVER BOX
(Intl. Box Code 0325)
TUCK FOLDER
(Intl. Box Code 0420)
ONE-PIECE TELESCOPE BOX
(Intl. Box Code 0409)
DOUBLE END WALL, DOUBLE SIDE WALL SELF-LOCKING TRAY
SELF-LOCKING TRAY WITH COVER
Corrugated Containers

AUTO-LOCK BOTTOM
The recessed corners help protect the product and the die-cut window allows for addressee instructions.
Developed by contemporary designer John Edminster, this structure provides a decorative, reclosable three-faceted top for a hexagonal carton.
This blank folds into a sturdy container for heavy products, in this case a 5 lb. spool of picture wire.
ONE-PIECE FOLD-OVER FOR SPECIAL LIGHT BULB
This sample has supports for a U-shaped light bulb.
SELF-LOCKING TRAY WITH DOUBLE SIDE WALLS AND TEAR-AWAY FRONT PANEL
E-FLUTE CORRUGATED GARMENT BOX
A pad cut from the waste of the sheet can provide a floor for the cassette well.

This tray or caddy with both wings and ears, and Walker locks features a platform off the tray's front panel with an audio or video cassette well.
SELF-LOCKING TRAY WITH DOUBLE FRONT WALL AND COVER

Corrugated Containers
SELF-LOCKING TRAY WITH DOUBLE FRONT AND SIDE WALLS AND LOCKING EARS
SELF-LOCKING TRAY WITH DOUBLE FRONT WALL AND ZIPPER
TEAR STRIIP
Note the unique corner treatment
E-FLUTE CORRUGATED SHOE BOX VARIATION
Note the projecting stubs above the handle openings to facilitate stacking the cartons.
The triangular projections for an axis for the cable spool when the box is closed.

The hole serves as the cable dispenser.
This corrugated structure wraps around a glass flower vase.
CORRUGATED SHOE BOX WITH VENTILATION HOLES
TRIANGULAR SELF-LOCKING TRAY WITH COVER AND PEGBOARD HANGER
This protective frame corner is adjustable to three different frame thicknesses.
ONE-PIECE FOLDER
(Intl. Box Code 0401)
CORRUGATED BOOK SHIPPER WITH RECESSED SELF-LOCKING CLOSURES
BOOK SHIPPER WITH ZIPPER OPENING AND BUILT-IN PADS
SHIPPER WITH DIE-CUT OPENING FOR AUDIO TAPES
This carrying case requires no glue, features interesting configurations for the graphics, and is suitable for a large number of products.
Corrugated Fruit Basket

Corrugated Containers

Grain Direction
OPEN COMPARTMENT LINERS
(BOTTOM PATTERN SHOWS LINER WITH B-BLOCK)
OPEN COMPARTMENT LINER

Corrugated Containers
CORRUGATED CONTAINERS

JOINED LINER AND OPEN COMPARTMENT LINER

Diagram of joined liner and open compartment liner.
DIE-CUT ANCHOR PAD
Corrugated Containers

DIE-CUT ANCHOR PAD
BRACE PAD AND CORNER BRACE PAD

Corrugated Containers
ACCORDION BRACE PAD AND CLEARANCE PAD
CORNER PROTECTORS

Corrugated Containers
Corrugated Containers

SCORED LINER AND SCORED SHEET
Corrugated Containers

SCORED LINER
Corrugated Containers

SPACE LINER AND STAR LINER
This protective cushioning device may be die-cut to conform to many different fragile objects.
ONE-PIECE FOUR-CELL PARTITION
Corrugated Containers

Z PARTITION AND DOUBLE Z PARTITION
I-BEAM PARTITION AND FOLDED FIVE-CELL PARTITION

Corrugated Containers
SCORDED AND SLOTTED COMPARTMENT FILLER
Corrugated Containers

SLOTTED 12-CELL PARTITION
16-CELL EXTENSION PARTITION
INSERT BUILT AROUND THE PRODUCT
12-CELL CONTAINER
A computer program CD plus instruction manual wrap suited for the mailer on the following page
This spacer is inserted into a corrugated shipping carton to separate young plants.
PATTERN FOR THE CORRUGATED PLATFORM
CONSTRUCTION OF THE CORRUGATED PLATFORM
5

Point-of-Purchase Displays
Die-cut three-dimensional displays first appeared in 1910, and photographic full-color displays made their appearance in the late 1920s. With the development of new plastic materials and techniques, point-of-purchase (P.O.P.) displays can now be produced in a variety of styles for practically all consumer products. With the rapid growth of many industries and the increasing variety of products, the point-of-purchase display has become an ever more effective selling aid for retailers.

The expansion of self-service stores and changes in consumer buying habits have also contributed to the development of P.O.P. materials. The modern retail establishment is a busy place in which a large percentage of selling is accomplished through self-service; consumers choose merchandise themselves rather than having it brought to them by salespeople. Often, unplanned buying decisions are made in the store, and an effective, well-designed display may be the deciding factor in a consumer’s choice.

Planning and designing a P.O.P. display is a complex job involving a variety of materials and technologies. Paperboards, plastics, and corrugated boards all play an important part in the production of the display.

There are several categories of P.O.P. displays. Among them are display merchandisers, promotional displays, display shippers, counter displays, floor displays, and gravity-fed displays.

(Large supermarket displays, permanent displays, wire displays, dump bins, and motion displays, all of which tend to be larger and more expensive to produce, are not discussed here.) Display merchandisers play an important part in self-service systems because they are strategically placed in the store, usually near the cash register or checkout counter. The display merchandiser is sometimes called a promotional display because it is designed to be used only for the duration of a particular promotion.

Promotional displays have a short life, usually three to four weeks (i.e., the duration of the promotion). The material used is usually paperboard or E-flute corrugated, often combined with an inexpensive vacuum-formed (thermo-formed) plastic platform to hold the product.

The display shipper is the most common variation of the promotional display. It is a shipping carton that opens up to form a display with a die-cut riser (or reader) panel for art and copy. Shippers are used in the mass merchandising of health and beauty aids, liquor, toys, novelties, pharmaceuticals, and books. The advantage of the shipper is that it combines a shipping carton with a display setup.

Gravity-fed displays are one of the oldest types of display systems. They are used for film, shoe polish, and small packages of various products.

The following pages contain a variety of structural designs and patterns for P.O.P. displays.
This S.W.E. (single-wing easel) invented by Mike Scotti stays erect by spring tension.
The ears slide in the slots when the easel is set up.
May be locked by pop-ins on the bottom panel.
May be glued to back of cards, boxes, etc., or may be keyed with lock tabs to display.
This easel has forward projections off both wings to support a “cowcatcher” panel beneath the main panel of the display.
DISPLAY CARD, BROCHURE, OR SAMPLE HOLDER WITH TWO-WINGED EASEL BUILT IN
TWO-PIECE DISPLAY EASEL WITH HEADER CARD AND SAMPLE/BROCHURE BIN
POCKET EASEL WITH RIFLE LOCK
This easel is especially suitable for very tall displays that need to be folded in half for shipping. The middle portion of the easel may be accordion-folded back out of the way of the main lateral crease of the display.

The reinforcing turnbacks lend extra stability.
ONE-PIECE, DOUBLE SIDE WALL, TILTED-PLATFORM DISPLAY STAND
WITH BUILT-IN EASEL
PULL-OUT SLEEVE THAT, WHEN FOLDED BACK, CREATES A SELF-SUPPORTING DISPLAY
This is a rigid (set-up) box; the corners of the outer tray are connected with stay tape and the tray is covered with cover stock.
The stacking tabs that protrude above the top surface of the container insert into the slot of the above-stacked container with a compatible footprint.
Shown with top and partial front removed, this unit has reinforced corners.
TWO-COMPARTMENT DISPLAY B
As a shipping container, this carton features a lid attached to the back panel (not shown). Once the lid has been torn off, the unit acts as a display bin.
This double-front/triple-end wall bin is ideal for assorted hardware items.
SIMPLE DISPLAY WITH 1-2-3 BOTTOM
INFOLD/OUTFOLD DISPLAY WITH BOTTOM LOCK SLOTS
The lid is prescored and perforated to create a display panel when opened.
The perforated panel doubles as a header.
RHOMBOID DISPLAY CONTAINER WITH ARTHUR LOCK/LOCK TAB AND SLIT COMBINATION

Assembly requires no glue
SINGLE FRONT WALL, SINGLE SIDE WALL CONTAINER DISPLAY WITH HIMES LOCK BOTTOM
HOOK LOCK AND WALKER LOCK COMBINATION DISPLAY

Point-of-Purchase Displays
DOUBLE FRONT, DOUBLE SIDE PANEL DISPLAY WITH HOOK LOCK AND WALKER LOCK COMBINATION
DOUBLE SIDE WALL, SINGLE FRONT WALL DISPLAY WITH FOLD BACK
SINGLE END WALL, DOUBLE SIDE WALL SHIPPER/DISPLAY WITH PINCH LOCKS AND BUILT-IN SEPARATORS
This is a patented type of display construction.
This is a patented variation of the rhomboid type of display container.
The slits in the inner walls permit placement of carded products.
GRAVITY-FED DISPENSER
This shipper-display unit has been configured for six-carded products. The slotted panels may be adjusted for fewer or more units to be displayed.
This two-piece container has an insert that is configured for carded merchandise.
DOUBLE END WALL, DOUBLE SIDE WALL CORRUGATED SELF-LOCKING DISPLAY
This double front wall, angled double side wall tray with Walker locks has a slit in the top of the double back wall to accommodate the separate header or riser illustrated on the next page.
The header may be die-cut into any suitable configuration; the “tongue” has been formatted to fit the slit in the back panel of the corrugated display.

The insert helps the contents of the display lean back.
This double front, end, and side wall bin has bottom tabs and corresponding slots in the top to facilitate stacking.
CORRUGATED SHELF DISPLAY WITH BROCHURE SLOT
Double-walled display with reinforced corners and stacking tabs and receptacles
This carton has four reinforced corners to facilitate stacking of heavy products.
The insert divider facilitates stacking.
This double-walled carton features corner stacking tabs and receptacles.
This insert and the product separators fit into the display container on the previous page.
Ideal for a “dump” style of display. A base may be added to make this a floor display.
TWO-PIECE DISPLAY STAND WITH SEPARATE CARD, DIE-CUT TO HOLD A SPECIFIC PRODUCT/PACKAGE
One of the many kinds of display partitions that can be built using corrugated board. It can be free-standing or supported by the display stand on previous page.
This 50" tall display base may be scored vertically in the center of both side panels and horizontally across all panels for easier shipping and storing. (See Scotti Easel, page 600.)
Two of these units fit on the display base pattern on the preceding page. The protruding ears on top of the unit fit into the base of the top bin.
Corrugated trapezoidal display base. The lateral score lines in the side and back panels indicate the *breakdown score*, which allows the base to be folded in half for shipping.
The slot in the bottom front panel mates with the tongue on the inside-out shipper on the following page.
The shipping container has the graphics on the inside panels. The bottom is taped; top panels are folded back and the riser panel is kept in place by the tongue and slot combination.
The ears on the front panel lock into the slots on the side panels. The slots in the front panel and ears on the side panels match up with the inside-out shipper/display container on the following page.
The printed inside of this container unfolds into a display tray at point of sale. The riser panel's tabs fit between the side panels and the cover flaps that are folded back. The slots and ears mate with the ears and slots of the base on the previous page.
Display containers can be divided into sections fitted to the product(s) to be displayed. The corrugated dividers shown here are slotted, folded, and slide together to form six equal partitions.
This corrugated tray with double front and side walls can be used as a counter display or as one level of the “waterfall” display shown on the following page.
TWO-PARTITION CORRUGATED COUNTER DISPLAY
The 3-step waterfall corrugated display stand is ideal for showing one or more products on different levels.
This pattern is but one of many configuration possibilities. The top closure panel may be folded upon itself to add header space.
The slotted and scored insert carries the weight.
May be used by itself or as a base
The scored and folded back base supports the platform.
CORRUGATED GRAVITY-FED FOUR-SECTION “DUMP” DISPLAY
TWO-PART CORRUGATED DUMP DISPLAY
The corrugated speed table top features slots to accommodate the belt locks of the two stands.
A pair of these units is required for the speed table. The belt locks secure the top to the stands and the slots mate with the support section.
The slots in the support mate with the two leg sections. The top is then secured to the stand with the eight belt locks.
This version has inner well walls that click into the slots in the bottom. One of the four walls imparts a slight lean-back for a separate riser.
Altering the inner well walls permits the sleeve to fit snugly in this display. This pattern lends itself as well to a paperboard container; a second unit could serve as a closure when placed upside down over a sleeve.
With the following two pages, this part makes up a four-shelf display.
This is the base for the elements on the following five pages.
Point-of-Purchase Displays

DISPLAY BIN

679
ASSEMBLED FLOOR DISPLAY

Point-of-Purchase Displays
This base may be used either way as illustrated. The stacking tabs would have to be moved to the opposite side. See the next two pages.
Double side walls with stacking receptacles for both the stand and the partition on the following page.
Point-of-Purchase Displays

CORRUGATED PARTITION
The outfold/infold at the base promote stability of the stand.
Glossary

Adhesion The process of attaching objects (e.g., by pasting, gluing) with adhesive materials.

Aseptic packaging Sterilized containers made of plastic-lined paper (foil and plastic lamination).

Base The lower or receptacle portion of a setup box.

Blank A folding carton after die-cutting and scoring but before folding and gluing.

Blind embossing See embossing.

Box A complete paper box, including base and lid.

Brightwood box A tray-style carton made on the Brightwood machine.

Bundle A unit of boxboard containing 50 pounds of sheets.

Bursting strength test A test that measures the degree of resistance of a material to bursting.

Calendering A process in which paper is pressed between metal rollers to form a continuous sheet under controlled conditions of speed, heat, and pressure.

Caliper points A measure of paper thickness, expressed in units of a thousandth of an inch and usually written in decimals.

Carton A unit container made for bending grades of boxboard.

Chipboard Recycled paperboard.

Compression test A test in which force is applied by two flat surfaces to opposite faces of a box.

Converter A manufacturer that fabricates folding cartons from boxboard and other packaging materials (e.g., sheet plastics).

Corrugated line board and medium test A test that measures the amount of force required to crush a fluted corrugated medium; measures the stiffness of the material.

Corrugated paperboard A material constructed from alternating layers of fluted paperboard. (Flutes are classified as A, B, C, and E.)

Count The actual number of sheets of a given size, weight, and caliper required to make a bundle weighing 50 lbs.

Cutting and creasing die A steel rule form used on a press to cut and score sheets of boxboard into folding carton blanks.

Die-cutting The process of cutting shapes from paperboard using cutting or stamping dies or lasers.

Dividers Loose strips of paper or boxboard used to separate items of merchandise.

Double wall A material consisting of three flat facings and two intermediate corrugated members.

Drop test A mechanical procedure used to test the safety of package contents during shipping; determines the resistance of a filled box to shocks caused by dropping it in certain ways (i.e., on corners, edges, faces, etc.).

Easels Supports attached to a box to hold it upright for display.

Embossing A process in which paper is pressed between metal dies to create an image in relief.

Fiberboard A general term applied to fabricated paperboard utilized in container manufacture; may be either corrugated or solid.

Filled board Boxboard containing center plies consisting of different materials from those used for the top and bottom liners.

Flap lid A lid that has no sides or ends and is hinged to the base of the box.
Flexographic printing Printing from flexible plates made of rubber or plastic.

Flutes The wave shapes in the inner portion of corrugated fiberboard. The flute or corrugation categories (A, B, C, and E) indicate flutes per linear foot.

Folding carton See carton.

French lid A lid with an extension edge, sides, and ends; it fits outside the base of the box.

Furnish A mixture of water, pulp, paper scrap, sizing, dyes, and other additives that is fed into the wet end of a paper- or board-making machine.

Grain The direction in which the fibers in paper line up.

Gravure printing A printing process in which specially etched cylinders with cells to accept and store inks rotate the image to the impression cylinder, which transfers the image to paperboard.

Inner packing Materials or parts used in supporting, positioning, or cushioning an item.

Labels Die-cut, often self-adhesive applications used to decorate or identify packages.

Laminating Bonding together two or more layers of material, usually impregnated with thermosetting resin.

Laminator A machine that adheres two or more plies of paper or board.

Laser A device that produces a very narrow beam of extremely intense light; used in industrial processes, medicine, and detailed die-cutting.

Letterpress A printing method in which ink is transferred from a metal plate directly to a sheet of paperboard.

Lid The upper and covering portion of a paper box.

Lifts Strips of ribbon, cloth, tape, or paper attached to an inner tray, allowing it to be easily removed from the base.

Loose wrapping A process in which a lid is covered with paper on a wrapping machine or by hand; the wrapper is a single piece with adhesives only at the edges.

Manufacturer’s joint The seam of a carton, where the two edges of the box are joined together by stitching, gluing, or taping.

Master carton A carton that is used to ship smaller cartons.

Neck A shell inserted in the base of a shoulder box, attached by an adhesive and extending above the base into the lid.

Newsback Chipboard that is lined on one side; used for inexpensive printing.

Offset printing (lithography) A printing method in which ink is transferred from a plate to a smooth rubber “blanket” roller that transfers the image to paperboard.

Padded top An extra top, covered with paper or cloth and including one or more layers of wadding or other padding material, that is attached to a top lid.

Paperboard (cardboard) A material made from laminated layers of paper in sheets of 12 points or more.

Paper stock Reclaimed (recycled) material that has been pulped for the use as a finish for paperboard; includes newsprint, reclaimed corrugated containers, and mixed paper and boxboard (kraft) cuttings.

Paster A machine that applies an adhesive to two or more plies of paperboard.

Ply A layer of boxboard formed on a multi-cylinder machine.

Pulp Basic cellulose fibers resulting from the disintegration of wood, rags, and other organic
materials by chemical or mechanical processes; used to make boxboard.

Puncture test A test of the strength of material, expressed in ounces per inch of tear, as measured by the Beach puncture tester.

Recycling The use of previously used materials to make new objects.

Scoring Making an impression or crease in a box blank to facilitate bending, folding, or tearing; feeding boxboard sheets through a scoring unit.

Set-up paperbox A paperbox or rigid construction that has been formed or set up and is ready for use (as opposed to a folding carton or shipping container; see corrugated box).

Shell A plain, unprinted carton designed to be overwrapped with plain or printed paper, fabric, or other materials.

Shoulder box A box with a glued neck inserted so that its base, ends, and sides form a shoulder on which the lid rests.

Slide box A box in which the lid is the form of a shell into which the base is inserted at the side or end.

Stay Material used to reinforce the corners of a base, lid, or tray; may be paper, cloth, combination (cloth and paper), wire, metal, or plastic tape.

Stitching, stapling, and taping The application of metal fasteners or tapes to form or close a box.

Telescope box A box in which the sides and ends of the lip slip over the base to either partial or full depth.

Tight wrapping The process of covering a base, lid, or tray with paper on a wrapping machine or by hand; the wrap is a single piece whose entire surface is covered with adhesive.

Tray-style carton A folding carton with a hinged cover extending from the side walls.

Trim Paper or cloth covering to strengthen or decorate base edges and lid or extension edges.

Triple wall A material consisting of four flat facings and three intermediate corrugated members.

Tube-style carton A folding carton that encloses a product with flap, tucks, and locks.

Tuck The end portion of the top of bottom flap of a folding carton, which is inserted into the container to hold the end flaps in place.

Universal Product Code (UPC) A printed code on containers and other forms of packaging that provides information about the product for purposes of inventory control and retail pricing.

Vibration test A method of checking vibration during transportation.

Water absorption test A measure of resistance to water absorption; applied to boxes impregnated with water- and moisture-resistant coatings.

Web A roll of paper or other flexible material as it moves through the machine in the process of being converted.
Bibliography

Fibre Box Handbook (22nd ed.). Rolling Meadows, IL: Fibre Box Association, 2005.

Packaging World, monthly magazine published by Summit Media Group, Chicago, IL.
Index

Accordion (fold), 282, 314, 335, 336, 387
Accordion Brace Pad, 550
Accordion Style Closure, 186
Ace Lock Bottom, 402
Adjustable Size Flower Vase Container, 527
A-Flute Corrugated, 462–465
Airplane Style Straight Tuck, 107
Anchor Lock, 34, 47, 80, 119
Anchor Pad, 546–547
Andre-Matic Can Carrier, 404
Angle H-Beam, 571
Angle Scored Box with Fifth Panel, 239
Animals Sleeve, 224
Antiprism Well, 671–672
Arcuate Fluting, 233, 234
Arcuate Folder, 360
Arm Display, 632
Arthur Lock (Jones Lock), 68, 85, 122, 350
Aseptic Packaging, 358, 359, 364
Automatic Bottom (Auto Glued, Automatic Lock,
Crash Lock, or Himes Lock), 114, 125–128, 187,
492, 501–502, 538, 579–580
Automatic Crash Lock, See Automatic Bottom

Baby Bottle Hanger, 311
Back Panel, 23
Bacon Pack, 142–145
Bags (Shopping & Gift Bags), 377–385, 388
Banker's Bottom, 494
Base (Display Base), 646, 648, 651, 653, 662–664,
673–675, 682, 685
Basket & 2-piece Display Basket, 540
Beers Style, 31, 42–44
Bellows (Gusset Tuck), 113–115
Bellows, Easel, 595
Bellows Side Flaps, 250
B-Flute Corrugated, 462–465
Bibliography,
Birdhouse Shape, 263
Bleed, 23
Bliss Box, 487–489
Book Shipper, 534–537
Bottle Container, 158, 401
Bottom Glued Interlocking Top with Carrier Holes,
135
Bottom Glued Sleeve, 316, 318, 319, 401
Bottom Lock Sleeve, 320–322
Bottom Panel, 23
Boxboard, 422, 432

Box from a Circle with Hang Tag, 376
Brace Pads, 549
Bracing Pads. See Inserts,
Brightfold, 41
Brightwood Style, 30
Brochure Holder, 598–599, 638
Butter/Margarine carton, 150–132

Caboose, 278
Can Carrier, 404–408, 415
Candy Gift Package, 280
Candy Package with Rounded Corners, 342, 363
Carrier with Heart Shaped Window, 213
Carrying Case, 389, 390, 504, 539
Carrying Handle, 185, 187, 189, 190, 200, 213
Cassette Shipper, 503, 511, 537
CD/DVD Holder with Instruction Space, 583–584
Center Full Overlap Slotted Container, 471
Center Special Slotted Container, 473
Center Special Overlap Slotted Container, 471, 475
C-Flute Corrugated, 462–465
Chesterfield Easel, 601
Chime Locks, 409
Cigarette Sleeve, 306
Citrus Fruit Shipper/Display Tray, 521–522
Coach, 276
Compact Disk Sleeve, 353–357
Computer Note Pad Carrier, 504
Concave/Convex Package, 180, 182, 219, 225, 226,
228, 235, 236
Container Sleeve, 310
Corner Locks, 16, 17, 32, 53, 54, 61
Corner Protector, 530, 551
Corrugated, 461–587
Corrugated Bike Helmet Carrier, 519
Corrugated Bottle Container, 515
Corrugated CD Mailer, 503
Corrugated Cable Dispenser, 525
Corrugated Carrying Case, 515, 519
Corrugated Container, 520
Corrugated Crystal Container, 582
Corrugated Easel. See Easel,
Corrugated Fruit Basket, 540
Corrugated Platform, 586–587
Corrugated Shipper/Display Box, 610, 630, 640–642
Corrugated Shipping Container, 491–492, 520–526
Corrugated Spacer Insert, 585, 631, 655
Cosmetic Packaging, 21, 162, 170–172, 179–183,
185–190, 200–205. See also Novelty Packaging,
Counter Display Tray, 607, 616, 618–628, 633–638, 643
Cover Stock, 422–423
Cowcatcher Panel, 597
C-Partition, 569
Crash Lock, 114. See also Automatic Bottom Cup, 394, 395
Cup Holder, 396
Curved Score, 193, 219–220, 225–229, 232–235
Cushion Pad Folds, 553
Cutting Die, 7, 8
Decorative Ends Wrap, 341
Delivery Van, 273
Design Style Box, 483–484
Diamond Shape, 242, 263
Die, See Cutting Die & Scoring Die
Die-Cut Pad, 546–548
Dipyramid, 284
Dispenser, 57, 153, 154, 175, 207, 256, 309, 363
Dome Top, 202, 203, 329
Double Cover Box, 177, 485
Double End Walls, Double Side Walls Self Locking Tray, 499
Double End Walls Self Locking Tray, 498
Double Lined Slide Box, 481
Double Lock Tab, 115
Double Lock Tray, 35
Double Slide Box, 479
Double Tray Folder, 313
Double Wall(s), 40, 69
Double Wall Corrugated, 463
Double Wall Octaonal Tray with Foot Locks, 89
Double Window Box, 200
Double Wing Easel, 596
Double Z partition, 567
Drawers, 452
Drugstore Lock, 118
Dump Display, 644, 664–666, 676–681
Dust Flap, 23

Ear Hook, 123, 124, 328
Easel, 591–603
Economy Seal End, 103–105
Edge Lock, 117
Edge Lock Sleeve, 318
E-Flute Corrugated, 462–465
E-Flute Corrugated Garment Box, 510

E-Flute Shoe Box, 517–518
Eight Sided Corrugated Produce Shipper, 524.
See also Octagon
Elgin Style Wrap, 132
Ell-Strip Bacon Pack, 142
Embossing, 10
End Loaded Bottle/Can Carrier, 406, 407
End Panel, 23
Extension Edge, 443, 446
Extension Partition, 576

Face Panel, 23
Facetted Container, 194, 195, 222
Facetted Pillow Pack, 365
Facetted Top, 146, 505
Fasteing, 23, 466. See also Manufacturer’s Joint
Fifth Panel, 157, 149–150
File Box, 451, 494
Five Cell Partition, 570
Five Panel Folder, 297, 469
Five Point Star, 288
Five Sided package with Tucks, 247
F-Flute, 462
Flanged Liner, 545
Flattop Tray, 656
Flexography, 4–6
Flip Top Box, 152
Flip Top Cover, 46
Flower Stall, 272
Flute, Flute Gauge, 462
Folded Five Cell Partition,
Folded Four Cell Partition, 572
Folders, 325, 326, 352
Fold Over Wrap, 58, 343, 362
Foot Locks, 63, 89
Four Cell Auto Lock Bottom, 579
Four Cell Partitions, 564
Four Corner Arcuate Fluting, 233
Four Corner Beers Style Tray, 28, 30
Four Corner Brightwood Style Tray, 30
Four Corner Double Arcuate Fluting, 234
Four Count Bottle Carrier, 416–418
Four Corner Infold/Outfold. See Also Beers Style & Brightwood Style Tray,
Four Drawer Box, 452–454
Four Juice Can Wrap, 415
Four Partition Carrier, 419
Four Slotted Closure, 181
Four (4) Style Bliss Box, 488
Four-Two (4-2) Style Bliss Box, 489
Frame Corner, 530
Frame View Tray, 71–77, 79, 97
French Reverse Tuck, 109
Friction Tuck Top, 120, 179
Front Panel, 28
Frost Lock, 117
Full Flap Automatic Bottom, 125, 501
Full Overlap Lock Tab & Slit, 203–204
Full Overlap Seal End, 100
Full Overlap Seal End with Van Buren Ears at Bottom, 101
Full Overlap Seal End with Perforated Pour Spout, 102
Full Overlap Slotted Container, y470
Full Overlapping Flaps & Side Hooks, Full Telescope Design Style Box, 484
Full Telescope Half Slotted Container, 477
Full Telescoping Trays, 53
Gable Top, 185, 187, 192, 193, 196, 266264
Gift Wrap, 345
Glossary, Glue, 10, 590
Glued Bottom Strap, 412
Glued Corner Tapered Tray, 37, 38
Glued Joint, 466
Glue Lap, 23. See Also Manufacturer’s Joint
Glue Style Tray, 45–46
Glued-Up Tray with Protective End Panels, 31
Glued-Up Tray with protective End Panels and Tapered Side Panels, 32
Gondola, 277
Gravity–Fed Dispenser, 153, 625, 665
Gravure (Intaglio) Printing, 4–6
Greenleaf Bottom, 202, 206, 248, 381
Gusset, 258–260, 286, 314. See Also Bellows, Gusseted Package with Hook & Slot Closures, 289 Gusseted Top Closure, 229 Gusseted Top & Bottom Closure, 231
Half Slotted Box with Cover, 472
Half Slotted Box with Full Telescope Cover, 478
Half Slotted Box with Partial Telescope Cover, 476 Handle. See Carrying Handle,
Hanging Panel, 148–150, 175
Hang Tag, 156
Hardware Bin, 611
Hardware Box, 312
Hardware Folder, 506
Hardware Style Tray, 52
H-Beam Partition, 571
Header (Display), 636, 642, 644
Heart Shaped Container, 391
Heart Shaped Closure, 212, 214
Heart Shaped Window, 213
Heat Sealed Tray, 37
Heavy Duty Folder, 344
Hexagon, 238, 248, 250, 251, 253, 538
Hexagonal Slanted Display, 670
Hexagonal Tapered Box, 254
Himes Lock, 114, 126, 153. See also Automatic Bottom
Hinged Box, 444–445
Hinge/Hinging Tape, 424
Historic Buildings, 267–271
Hollow Wall Shipper/Display, 657–658
Hook Latches, 187, 623
Hook Lock & Walker Lock Combination, 620–621
Hook Tab, 187
Houghland Bottom (Snap Lock or 1-2-3 Bottom), 120, 121, 189
I-Beam Partition, 570
Ice Cream Containers, 59, 60, 397
Infold Automatic Bottom, 128. See Also Automatic Lock Bottom
Infold/Outfold Tray, 614
Infold/Outfold Display, 613
Inserts (Liners, Platforms, Partitions), 429–430, 438, 578, 643
Inside-Out Shipper, 652, 654
Intaglio (Gravure) Printing, 4–6
Interlocking Box Sets, 209, 210
Interlocking Double Cover Box, 495
Interlocking Heart Closure, 212, 214
Interlocking Top, 495
John Edminstre Vokcano, 671
Joined Liner, 544
Jones Lock, 68
Jones Style Carrier, 405
Kliklok® Charlotte Stripper Lock Tray, 80
Klikweb® Style Tray, 81
Lantern Shape Carton, 232, 265
Laser Cut, 6
Latch Closure, 622
Letterpress, 4–6
Light Bulb Sleeve, 161, 295–303
Light Bulb Package, 160, 163, 507–508, 563
Liners. See Inserts, 462–472
Liquid Containers, 191, 192
Lithography, 4–6
Locomotive, 275
Lower Tuck, 23
Mailer Lock, 112
Mansard Roof Shaped Sleeve, Manufacturer's Joint (Glue Lap), 23
Margarine/Butter Carton, 130–132, 134
Milk Carton, 191–192
Modified T Partition, 568
Multi-Facetted Box, 230
Multiple Scored Top, 209
Multiple Scored Top & Bottom, 210
Multiunit Packaging. See Dividers & Partitions
Niagara, 660
Novelty Packaging, 190–199, 259–260
Octagon, 88, 183, 184, 262. See Also Eight Sided Octagonal Box with Uneven Sides, 258
One Piece Beers Tray, 42–44
One Piece Box with Four Cell Partition, 579
One Piece Box with Six Cell Partition, 580
One Piece Box with Twelve Cell Partition, 581
One Piece Brightfold with Dust Flaps, 41
One Piece Brightwood Tray with Hinged Cover, 39
One Piece Five Cell Partition, 568
One Piece Folder (Wrap), 352, 348
One Piece Four Cell Partition, 565
One Piece Glued Bottom Strap Bottle Carrier, 414
One Piece Ice Cream Container with Dust Flaps, 59
One Piece Open View Display Box, 174
One Piece Quadruple Box, 208
One piece Shadow Box, 82, 176
One Piece Six Cell Partition, 566
One Piece Telescope Box, 497
One Piece Wrap, 339, 340, 349, 351. See Also One Piece Folder
One Piece Wrap with Lock Tabs, 78
1-2-3 Bottom. See Houghland Bottom
Open Compartment Liner, 542–544
Open Ended Collapsible Tray, Two Corner Beers Style
Open Ended Simple Glued Sleeve, 292
Open Ended Tray, 26
Open End Sleeve with Finger Holes, 293
Open End Sleeve with Recessed Product Retainers, 294
Open Liner, 641
Open Sided Sleeve, 315
Open Single Tub Sleeve, 317
Open Throat with Tuck Locks, 116
Overlap Slotted Container, 469
Panel Fold Shipper/Display Container, 615
Panels, 23
Paper Cup, 394, 395
Paper Cup Holder, 396
Partial Double End Wall and Side Wall Tray, 69
Partial Overlap Seal End with Lock Tab & Slot, 105
Partial Overlap with Perforated Top, 140
Partial Overlap with Perforated Top & Front, 141
Partial Telescope Design Style Box, 486
Partition. See Inserts
PDQ or Arcuate Folder, 360
Pen/Pencil Set Wrap, 392
Pentagon with Tucks, 195, 243
Pentagonal Dipyramid, 285
Perforating Die, 8
Peters Lock, 130, 131
Pharmaceutical Packaging, 164–169
Pinch Lock, 614
Platform, 429, 440. See Also Inserts, Pocket Easel, 600
Popcorn (Himes) Lock Bottom, 126 See Also
Automotive Crash Lock
Pouch with Himes Lock Bottom, Side Gussets, and Reinforced Snap-Lock Closure, 381
Four Spout, 102
Presentation Sleeve, 327
Produce Shipper/Display, 605, 639
Projector Lamp Container, 159, 163
Protective End Panel, 28–29
Push-In Closure, 206, 215–218, 253
Pyramid, 286
Quad Lock Ear Hook, 123
Railroad Freight, 279
Recessed End Box, 490
Regular Slotted Container, 474
Resealable Top Panel, 15
Reverse Tuck, 122, 197
Reverse Tuck Cubes, 208–210
Reverse Tuck Diamond Shaped Carton, 242
Reverse Tuck Shadow Box, 170, 173
Reverse Tuck Shadow Box with Fifth Panel, 173
Reverse Tuck/Straight Tuck Side by Side Cartons, 168
Reverse Tuck Tapered Container, 199
Reverse Tuck with Concave Top, 178
Reverse Tuck with Die Cut Bottom & Hang Tag, 156
Reverse Tuck with Die Cut Face Panel, 197
Reverse Tuck with Facetted Top, 146
Reverse Tuck with Header Card, 149
Reverse Tuck with Partition Formed by Die Cut Window, 162
Reverse Tuck with Special Dispenser Panel, 207
Reverse Tuck with Specially Constructed Partition, 164
Reverse Tuck with Tapered Sides, 199
Reverse Tuck with Tapered Top, 147
Reverse Tuck with Three Compartments, 167
Rhomboid Display with Arthur Lock/Lock Tab and Slit Combination, 617
Rhomboid Display Double Sidewalls, Double End Walls, and Arthur Locks, 625
Rhomboid Display with Infold/Outfold Sides, 614
Rhomboid Display with Steps & Dividers, 625–627
Rifle Lock, 600
Rigid Paper Box. See Set-Up Box,
Rip Tape (Zipper or Tear Strip), 14, 60, 137, 138, 142, 143
Rip Tape Bacon Pack, 143, 144
Satchel Bag with Hexagonal Bottom, 377
Scandia Wrap, 133
Scored Corner Protector, 559
Scored Liner, 8, 556, 558
Scored Sheet, 552, 554–557
Scored Slotted Compartment Filler, 573
Scoring Die, 8
Scotti Easel, 592
Sealable Dispenser, 154
Seal End, 137
Seal End Style Tray, 55
Seal End Style Tray with perforated Tear-Away Top, 56
Seal End Style Tray with Lock Tab & Zipper, 138
Self Cover Triangle with Lock Tabs Off Cover, 86
Self Locking Tray with Built-In Supports, 508
Self Locking Tray with Cover, 500, 509, 512, 514–515
Set-Up-Box, Rigid Paper Box, 429–459
Seven Sided Package with Gussets, 287
Shadow Box, 171–176, 211
Shallow Side Wall Folder, 524
Shelf Display, 661, 683–684
Shipper, Corrugated, 520–526
Shipper for Audio/Video Tape, 511
Shoe Box, 517–518, 528
Shoulder High Partition with Key Piece, 574
Side by Side Reverse Tuck/Straight Tuck, 168
Side by Side Straight Tuck, 169
Side Loaded Bottle Carrier, 400
Side Panel, 23
Silk Screen, 6
Simple Display with 1-2-3 Bottom, 612
Simple Folder, 323
Simplex Style Tray (Quickset), 67, 93, 95
Simplex Style Tray Web Corner Spot Glued, 70
Simplex Style Tray with Double Wall Part Cover,
Simplex Style Tray with Glued Gussets, 68
Simplex Style Tray with Tapered Outside End & Side Walls, 84
Single Cell Extension Partition, 561
Single Cell Support Partition, 562
Single End Wall, Double Side Wall Shipper/Display,
Single End Wall, Double Side Wall Tray, 63
Single Face Corrugated, 463
Single Front Wall, Single Side Wall Display,
Single Lined Slide Box, 480
Single Side Wall, Double End Wall Pinch Lock Tray, 62
Six Bottle Wing Sleeve, 409
Six Cell Auto Lock Bottom, 580
Six Corner Beers Style Tray with Anchor Locks, 47
Six Corner Brightwood Style Tray, 39
Six Corner Glue Style Tray, 45, 46
Six Count Carrier, 404, 410–414
Six Count Egg Carrier 98
Six Count Glued Sleeve,
Six Sided Carton with Push-In Closure, 251, 253,
(See Also Hexagon),
Six Sided Carton with Push-In Closure and Automatic Glued Bottom, 252
Six Sided Carton with Push-In Closure and Straight Tucks, 244
Six Sided Carton Variation, 245, 246, 539
Six Sided Dispenser with Tear-Away Opening, 256, 257
Six Sided Double Wall Tray and Partially Telescoping Cover, 90
Six Sided Sleeve with Automatic Glued Bottom, 331
Six Sided Two Piece Wrap, 334
Six Unit Insert, 201
Sixteen Cell Extension Partition, 578
Slanted Platform, 441
Slanted Sides and Domed Top, 361
Slanted Top Box, 148, 240
Sleeve, 400–403
Sleeve Style Three Count Multipack Ace Lock Bottom, 402
Sleigh, 281
Slide Box, 479–482
Slit Lock, 108
Slot, 632, 638
Slotted Corner Protector, 559
Slotted Scored Liner, 563
Slotted 12-Cell Partition, 575
Snap Lock, 121, 198, 220
Soft Drink Bottle Carrier, 493
Specialty Packaging. See Novelty Packaging,
Space Liner, 560
Speed Table, 667–668
Spiral Wound Tube, 398
Stackable Display with Foot Locks, 637
Standard Reverse Tuck, 108
Stapled, Stapled Joint, 466. See Also
 Stitched Joint
Star Liner, 560
Stay Tape, 425
Steel Rule Die, 7, 8
Step Insert and Header, 626, 636, 645
Stitched Joint, 466
Straight Tuck, 155, 190, 227
Straight Tuck Shadow Box, 172
Straight Tuck with Drug Store Lock, 118
Straight Tuck with Extended Top Panel, 136
Straight Tuck with Fifth Panel, 150, 151
Straight Tuck with Full Overlapping Flaps & Side Hooks, 129
Straight Tuck with Hanging Panel, 111, 150, 151
Straight Tuck with Inside Bottom Platform, 155
Straight Tuck with Slitlock Tucks, 106
Straight Tuck with Special Compartments, 166
Straight Tuck with Special Panel Through Window, 157
Straight Tuck with Special Side Panel Scores, 227
Straight Tuck with Specially Formed Partition Off Dust Flap, 163
Straight Tuck with Two Compartments, 165
Stripper Lock Tray, 33, 80
Stripper Lock Tray with Hinged Cover, 49
Taped Joint, 424, 466
Tapered Box with Rolled End Closure, 188
Tapered Package, 178, 189, 199
Tapered Sides, 1-2-3 Bottom, Tongue Lock with Carrying Handle, 189
Tapered Side Wall Tray with Arthur Locks and Double Hollow Side Walls, 85
Tapered Tray with Lid, 88, 335, 435
Tapered Tuck Top with Handle, 185. See Also Gable Top
Teardrop Shape, 261
Tear Strip, 14, 54, 60, 61, 238, 256, 257, 343. See Also Zipper,
Tetrahedron, 283, 359
36 Cell Partition, 577
Three Piece Folder, 533
Three Piece Set-Up Box, 604
Tissue Dispenser, 139–141
T-Partition (Modified), 568
Train, 275–279
Trapezoid with Reverse Tuck, 241, 242
Trapezoid Display Base, 650
Trays, 26–98, 427–437, 439
Tray and Slide, 449
Tray for Writing Instrument(s), 91, 92, 438
Tray with Corner Lock, 32–35, 427
Tray with Scalloped Side Panels, 48
Triangle, 86, 237, 337, 338, 390, 448, 516, 529
Triangular Box with Seasonally Themed Closure, 373
Triangular Carryall, 389–390
Triangular Closures, 221, 223, 224
Triangular Dipiramid, 283
Triple Arthur Lock Top, 205
Triple Slide Box, 482
Triple Z Partition, 568
Tri-Tuck, 505
Truck Shaped Carton, 274
True Lock Style Tray with Glued Cover with Tear-Away Strip, 54
Tube. See Spiral Wound Tube,
 Tube & Slide, 447
Tube Protector, 249
Tube Style Cartons, 21, 23, 100–260
Tuck, 23
<table>
<thead>
<tr>
<th>Item Description</th>
<th>Page Numbers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tuck Locks, 116</td>
<td></td>
</tr>
<tr>
<td>Tuck & Tongue, 110</td>
<td></td>
</tr>
<tr>
<td>Tuck Folder, 496</td>
<td></td>
</tr>
<tr>
<td>Tuck Seal Bacon Pack, 145</td>
<td></td>
</tr>
<tr>
<td>#2 (Two) Bliss Box, 487</td>
<td></td>
</tr>
<tr>
<td>12 Cell One Piece Container, 581</td>
<td></td>
</tr>
<tr>
<td>Twelve Cell Partition, n649</td>
<td></td>
</tr>
<tr>
<td>Twelve Count Bottle Carrier, 407</td>
<td></td>
</tr>
<tr>
<td>Twelve Count Can Carrier, 408</td>
<td></td>
</tr>
<tr>
<td>Twelve Count Tray Insert, 96</td>
<td></td>
</tr>
<tr>
<td>Two Compartment Dispenser with Tear-Away Closure, 207</td>
<td></td>
</tr>
<tr>
<td>Two Part Sleeve, 304, 305, 307–330</td>
<td></td>
</tr>
<tr>
<td>Two Partition Carrier, 420</td>
<td></td>
</tr>
<tr>
<td>Two Partition Corrugated Counter Display, 608–609</td>
<td></td>
</tr>
<tr>
<td>Two Partition Corrugated Counter Display Divider, 659</td>
<td></td>
</tr>
<tr>
<td>Two Piece Basket Display, 540, 644</td>
<td></td>
</tr>
<tr>
<td>Two Piece Dispenser Sleeve, 304, 305, 308</td>
<td></td>
</tr>
<tr>
<td>Two Piece Display Stand, 599, 645</td>
<td></td>
</tr>
<tr>
<td>Two Piece Folder, 532</td>
<td></td>
</tr>
<tr>
<td>Two Piece Full Telescoping Brightwood-Style Tray, 50</td>
<td></td>
</tr>
<tr>
<td>Two Piece Full Telescoping Friction End Tray, 51</td>
<td></td>
</tr>
<tr>
<td>Two Piece Full Telescoping Hardware Style Tray with Lock Ends, 52</td>
<td></td>
</tr>
<tr>
<td>Two Piece Single Lap Container, 393, 397</td>
<td></td>
</tr>
<tr>
<td>Two Piece Single Lap Tapered Container, 394</td>
<td></td>
</tr>
<tr>
<td>Two Piece Wrap, 333</td>
<td></td>
</tr>
<tr>
<td>Two Section Folder, 326</td>
<td></td>
</tr>
<tr>
<td>U-Partition with Wings, 596</td>
<td></td>
</tr>
<tr>
<td>Upper Tuck, 23</td>
<td></td>
</tr>
<tr>
<td>Van Buren Ears, 101</td>
<td></td>
</tr>
<tr>
<td>Video Cassette Shipping Tray, 511</td>
<td></td>
</tr>
<tr>
<td>Video Cassette Sleeve, 293</td>
<td></td>
</tr>
<tr>
<td>Walker Lock, 62</td>
<td></td>
</tr>
<tr>
<td>Window, 9, 156, 213</td>
<td></td>
</tr>
<tr>
<td>Window Box, 177</td>
<td></td>
</tr>
<tr>
<td>Wine Bottle Carrier, 515</td>
<td></td>
</tr>
<tr>
<td>Wraparound Blank, 478</td>
<td></td>
</tr>
<tr>
<td>Wraps, 346, 347, 550</td>
<td></td>
</tr>
<tr>
<td>Zipper, 14, 60, 137, 138, 142, 238, 514, 568</td>
<td></td>
</tr>
<tr>
<td>Zipper Sealed Wrap, 314</td>
<td></td>
</tr>
<tr>
<td>Z-Partition, 567–568</td>
<td></td>
</tr>
</tbody>
</table>